Iodine-129 and iodine-127 in seawater of the North Sea and precipitation from northern Germany

A. Daraoui¹, R. Michel¹, M. Gorny¹, D. Jakob¹, R. Sachse¹, L. Tosch¹, H. Nies², I. Goroncy², J. Herrmann², H.-A. Synal³, M. Stocker³, V. Alfimov³

¹ Institut für Radioökologie und Strahlenschutz, Leibniz Universität Hannover, Germany

²Bundesamt für Seeschifffahrt und Hydrographie (BSH) Hamburg, Germany

³ Ion Beam Physics, Paul Scherrer Institut and ETH Zürich, 2093 Zürich, Switzerland

Abstrat

Atmospheric nuclear weapons tests, nuclear accidents, and emissions from reprocessing plants have changed the natural abundances of ¹²⁹I ($T_{1/2}$ =15.7 Ma) in a sustainable manner. Mainly as a consequence of the ¹²⁹I releases from the European reprocessing plants, ¹²⁹I is in disequilibrium in all environmental compartments of the Western Europe.

Surface water from the North Sea and the English Channel, which were contaminated by the continous emission from reprocessing plants (La Hague and Sellafield), were analysed for ¹²⁹I by accelerator mass spectrometry (AMS) and for ¹²⁷I by inductively coupled plasma mass spectrometry (ICP-MS). Samples of seawater were taken during a cruise of the BSH FS-Pelagia between August 20 and September 09, 2009. This paper reports on the results obtained for ¹²⁹I and ¹²⁷I in 2009 and compares them with those from 2005.

The concentrations of ¹²⁷I in seawater of the North Sea are fairly constant with (44 ± 2) ng/g, with exceptions of coastal areas with high biological activity and of areas influenced by influx from rivers and the Baltic Sea. The results of ¹²⁹I/¹²⁷I ratios range between 1.5×10^{-8} and 2.7×10^{-6} : at least 4 orders of magnitude higher than the natural equilibrium isotopic ratio in the marine hydrosphere of 1.5×10^{-12} . The highest isotopic ratios are seen in the English Channel east of La Hague. The emissions from La Hague can be followed through the English Channel and subsequently through the North Sea. The variability of the ¹²⁹I/¹²⁷I isotopic ratios is exclusively determined by admixture of anthropogenic ¹²⁹I. Together with time series of the iodine isotopes in precipitation in Northern Germany, the results demonstrate the dominating role of the liquid releases for the ongoing atmospheric fallout of ¹²⁹I in Western Europe. Comparing these results with our earlier studies shows the disequilibrium of ¹²⁹I in the environmental compartments.

Keywords: Iodine-129, iodine, isotopic ratios, environmental pathways

1. Introduction

The long-lived radionuclide of iodine ¹²⁹I (half-live 15.7 Ma) is produced in natural by spontaneous fission of uranium in the earth-crust and I oceans, and by interaction of galactic cosmic ray particles with xenon in the stratosphere. The natural equilibrium isotopic ratio ¹²⁹I/¹²⁷I either calculated or measured is in the order of 10⁻¹³ [Edwards, 1962; Edwards and Rey, 1968; Kohman and Edwards, 1966; Fehn et al., 1986; Schink et al., 1995; Moran et al., 1998].

The anthropogenic ¹²⁹I is mostly produced by fission of ²³⁵U and ²³⁹Pu with isobaric yields for fission induced by thermal neutrons of 0.68 % and 1.6 %, respectively; as well as in the operation of nuclear reactors for research and power production. The civil and military nuclear activities produce and release anthropogenic ¹²⁹I into the environment. The releases of ¹²⁹I from atmospheric nuclear weapons tests were (43 – 150 kg) [Carter and Moghissi 1977, UNSCEAR 1982; Chamberlain 1991, Eisenbud and Gesell 1997], and those from the Chernobyl accident (2 – 6 kg) [Schmidt et al. 1998, Aldahan et al. 2007]. The amount of anthropogenic ¹²⁹I in the atmosphere and in surface waters has continued to increase due to releases from nuclear fuel reprocessing facilities, particularly in Western Europe, from the nuclear reprocessing plants La Hague (F) into the English Channel and Sellafield (UK) in to the Irish Sea. The releases of ¹²⁹I from these two reprocessing plants are shown in Fig. 3.

The atmospheric releases of ¹²⁹I from Sellafield stayed with a relative constant rate of 4 kg a⁻¹ between 1951 and 2005 with maximum 7 kg in 1980, while those from La Hague increased from 1966 (0.01 kg of ¹²⁹I) to 1996 (6 kg of ¹²⁹I). It can be seen that a similar amount of ¹²⁹I has been released to the atmosphere from the two reprocessing plants with total release 263 kg. The total liquid releases of ¹²⁹I

from La Hague and Sellafield increased from 1966 (> 0.1 kg a⁻¹) nearly continuously until 1990 (< 50 kg a⁻¹), increased significantly to about 250 kg y⁻¹ for La Hague and 69 kg a⁻¹ for Sellafield, then levelled off and even slightly decreased since 2000. As a consequence, the ¹²⁹I concentration and thus ¹²⁹I/¹²⁷I ration in the English Channel, North-, Baltic- and Irish Sea have been increased. In these seawaters, they have elevated to values of $10^{-8} - 10^{-6}$. The highest ratio of ¹²⁹I/¹²⁷I at $10^{-06} - 10^{-03}$ was found in the samples collected near the reprocessing plants [Kilius et al. 1994, Yiou et al. 1994, Michel et al. 2012].

In this paper, we report on ¹²⁷I, ¹²⁹I and ¹²⁹I/¹²⁷I isotopic ratios in surface waters of the North Sea and the English Channel, and in precipitation in the northern Germany. Iodine isotopes were determined by ICP-MS and AMS after Matrix separation. Our main goal of the present study was to complement and compare the results of the study StSch 4481 [Nies et al. 2010, Michel et al. 2012], to investigate the distribution and transport pathways of ¹²⁹I and ¹²⁷I in surface waters of the North Sea and the English Channel and to investigate the source of ¹²⁹I in samples of precipitation in the northern Germany.

2. Experimental

Surface water was collected from 78 stations in the English Channel and the Nort Sea in August-September 2009 during cruises of the BSH "Pelagia", under that for first time water samples from site close to the beach. At three stations 39, 40 and 60, samples surface water (15-32 m) as well of deep water from 100 to 512 m gepth were collected. Finally, precipitation sampled in Northern Germany were analysed in 2009.

Sample of precipitation was collected from Lower Saxony, Germany. In order to establish a spatial separation, Lower Saxony was divided into four regions (Michel et al. 2012). The region I was the close proximity to North Sea, northern German lowlands distant from the North Sea (region II), the fringe of the Harz Mountains (region III), and an area of the Elbe River in Lower Saxony in the vicinity of Gorleben (region IV). In addition to open-field precipitation sampled in each region II, through-falling precipitation was collected; through-falling mean here rain that falls down on forest and interacts with the canopy of the trees.

The samples water were filled into clean polyethylene bottles and added two pills of NaOH to hydrolyze organic species, to stabilize the iodine and to transform the iodine species to iodate until analysis [Michel et al. 2012]. We analysed 1-10 ml of filtered waters (through 0.45 μ m filter paper) for their ¹²⁷I concentration by ICP-MS (Thermo X7, Thermo Electron Corp) at the institute of inorganic chemistry, Leibniz University of Hanover, after 2-10 fold dilution in 25% TMAH. The detection limit was 0.1 μ g kg⁻¹ and relative standard deviations (RSD) were 1 – 5 %. For the AMS measurement of ¹²⁹I iodine matrix separation was necessary in the aqueous sample and used ion exchange resin. About 150 ml of original sample water were used for extraction iodine as AgI. All iodine species were first oxidized with 5 ml of Ca(CIO)₂ to iodate and then reduced with 20 ml [NH₂OH]HCl and 10 ml NaSO₃ to iodide. After the separation with using a DOWEX[®] 1x8 analytical grade ion exchange resin, about 3.0 mg of stable iodine (as NaI prepared from Woodward iodine) added as a carrier. The iodine was precipitated as AgI. Finally, the dried AgI precipitates were mixed with silver powder (AgI:I 1:4 by weight) and pressed into titan targets for AMS measurement.

The ¹²⁹I/¹²⁷I ratio was determined by 0.5 MV "Tandy" accelerator of the PSI / ETH Zürich AMS facility for the selection of charge state +3. The ¹²⁹I/¹²⁷I machine background was $(3 - 5) \times 10^{-13}$. The ¹²⁹I blank value of the total analyses were determined with Woodward iodine as trace catcher and were 1.5 x 10⁻¹⁵ g and RSD 1 – 18 %.

3. Results and Discussion

1. ¹²⁷I, ¹²⁹I and salinity in the North Sea

The concentration of ¹²⁷I, the activity concentration of ¹²⁹I, the ratios of ¹²⁹I/¹²⁷I and salinity in North Sea are listed in Table 1. It can be seen that the stable iodine concentration was justly constant with value of 44 ng g⁻¹. Only in coastal areas have low variation (36-42) ng g⁻¹.

The activity concentrations of ¹²⁹I show a fairly large spread between (4-674) mBq m⁻³ (Fig. 1, left). So there are up to 100 times difference between the low (station 47: West North of North Sea) and high (station 910: near of La Hague) values. The lowest activity concentrations are a factor of more than 40 higher than those found in the seawater from Hawaii (50 μ Bq m⁻³) and from the Indian Ocean (90 μ Bq m⁻³) [Michel et al. 2012]. It has been shown that the highest activity concentrations of ¹²⁹I are exhibited in the English Channel and along the coasts of France, Belgium, the Netherland, Germany, and until Denmark with values reaching (82-674) mBq m⁻³. Our values show good agreement with (2-890) mBq m⁻³ in the North Sea and the English Channel in year 2005 [Michel et al. 2012] and (280-420) mBq m⁻³ in the northern part of the English Channel and in the south eastern North Sea [Hou et al. 2007].

Fig. 1: ¹²⁹I/¹²⁷I isotopic ratios (right) and ¹²⁹I activity concentrations in mBq m⁻³ (left) in the North Sea and the English Channel.

Here we clearly see the high influence of La Hague on the North Sea and English Channel. But the influence of Sellafield has been showed in eastern and northern parts of North Sea. This can be confirmed with Help the other radionuclides as ⁹⁰Sr, ¹³⁷Cs, ^{238,239}Pu and ⁹⁹Tc, for more details see the studies Nies et al. 2010 and Michel et al. 2012. The complicated water currents in the North Sea can explain the pattern distribution of ¹²⁹I.

The ${}^{129}I/{}^{127}I$ isotopic ratios show the same distribution of ${}^{129}I$ in the North Sea and English Channel (Fig. 1, right), because the distribution of ${}^{127}I$ is justly constant in the North Sea.

Fig. 2 shows positive correlations between ¹²⁹I/¹²⁷I ratios and ¹²⁹I. ¹²⁷I concentrations are not influence the ¹²⁹I/¹²⁷I ratios. Also it exhibits the disequilibrium of iodine isotopes in the North Sea. Only the station Stade in the Elbe River and the station Medem in the mouth of the Elbe Estuary show ¹²⁷I- and ¹²⁹I-concentrations below. Their low ¹²⁷I and ¹²⁹I concentration of (10-29) ng g⁻¹ and (1-28) fg g⁻¹, respectively, are explained by the influx of continental surface water from the Elbe River. The highest ¹²⁹I/¹²⁷I ratios 2.7 x 10⁻⁶ were observed in the English Channel east of La Hague (Station 910) and he decrease along the coasts of France, Belgium, the Netherland, Germany and until Denmark (Fig. 1). The lowest ¹²⁹I/¹²⁷I ratios of 1.5×10^{-8} is least 4 orders of magnitude higher than the natural equilibrium isotopic ratio in the marine hydrosphere of 1.5×10^{-12} . In this study, no relationships between ¹²⁷I, ¹²⁹I and salinity are seen

Table 1: Salinity,	, ¹²⁷ I, ¹²	²⁹ I, and	129 I/127 I	ratios	isotopi	c in th	e North	Sea ar	nd the	English	Channel.
--------------------	-----------------------------------	----------------------	-------------	--------	---------	---------	---------	--------	--------	---------	----------

Station	Nummer	Latitude (°N) ;	Salinity		¹²⁹ I	$^{127}\mathbf{I}$	$^{129}I/^{127}I$
Station	Nummer	Longitude (°E)	(PSU)	(fg g ⁻¹)	(mBq m ⁻³)	(ng g ⁻¹)	(10 ⁻⁸)
STADE	1	53.370; 9.329	0.540	1.1±0.1	7.5±0.3	10.4±0.6	10.8±0.8
MEDEM-Reede	2	53.528; 8.431	10.70	27.9±1.1	182.5±7.7	29.4±1.5	93.5±5.9
Elbe 1	3	54.001; 8.066	30.97	46.2±1.9	301.9±12.7	44.6±1.9	101.7 ± 6.1
	3A	54.009; 7.101	33.11	42.8 ± 1.8	279.7±11.7	35.6±1.1	118.3±6.1
Borkumriffgrund	7	53.600; 6.250	33.17	46.1±1.9	301.5±12.7	37.4±1.1	121.4±6.0
VTC Estadand	7A	54.002; 5.405	34.51	17.8±0.8	116.3±4.9	44.6±1.9	39.3±2.3
VIG Friesland Botney Cut	8	54.000 ; 4.501	34.52	10.0 ± 0.4 12.6±0.5	03.0±2.8 82.3±3.5	43.0 ± 1.4 41.3 ± 2.1	22.7 ± 1.2 30.0+1.9
Bothey Cut	9	53 251 · 3 299	34.00	12.0±0.5	82.3±3.3 94.8+4.0	41.3 ± 2.1 40.0 ± 1.4	35.0±1.9
	9B	$53.201 \cdot 3.200$	34.66	36.2 ± 1.5	236 7+9 9	42.4+1.6	84 1+4 6
	10	53.000 · 4.000	35.14	26 1+1 1	170 4+7 2	39.9+1.4	64 3+3 4
Ijmuiden Appr.	11	52.300; 4.199	33.05	47.6±2.0	310.9±13.1	38.9±1.2	120.3±6.1
Maas Approach	12	51.600; 3.440	34.23	53.8±2.3	351.4±14.8	36.4±1.2	145.5±7.5
Bligh Bank	13	51.422; 2.514	34.86	70.8±3.0	462.8±19.6	$44.4{\pm}1.4$	157.0±7.0
	14	52.000; 2.003	35.03	27.5±1.2	179.8±7.6	40.1±1.4	67.5±3.6
Noord Hinder	15	52.289 ; 2.293	34.86	24.3±1.0	158.9 ± 6.7	38.4±1.2	62.4±3.1
	15A	53.000; 3.000	34.72	19.1±0.8	124.5±5.3	37.7±1.3	49.8 ± 2.6
D	15B	52.572; 2.121	34.38	2.3±0.1	14.9±0.6	41.5±1.1	5.4±0.3
Dowsings	16	53.200; 1.400	34.52	2.3±0.1	14.8±0.6	43.3±1.1	5.1±0.2
Neptune Gas Field	17	54.000; 1.000	34.65	4.0±0.2	25.8±1.1	42.3 ± 1.3	9.2±0.5
Rommodo Romiz	1/A 19	53.600; 0.227	34.41	2.5 ± 0.1	10.1±0./	41.2 ± 1.1	5.9±0.5
Darmaua Bank	18 4	54.599; 0.000	34.02	2.4 ± 0.1	15.9±0.8 16.7±0.7	43.4 ± 1.3 43.7 ± 1.7	5.5±0.5
Dogger Bank	10	54 599 · 2 002	34.54	2.0±0.1	13 5±0 6	42.5+2.0	4 8+0 3
Elbow Spit	20	54 598 · 3 599	34.95	2.0+0.1	13.2+0.6	44 0+1 5	4 5+0 2
Nordschillgrund	20	54.600 : 5.002	34.68	6.1+0.3	39.6+1.7	42.0+1.7	14.2+0.8
Weisse Bank	22	55.000; 6.150	34.46	22.0±0.9	143.8±6.1	45.7±1.4	47.4±2.4
	22A	54.599; 7.001	33.93	37.9±1.6	247.9±10.5	41.8±1.2	89.4±4.4
Sylt 2	23	55.000; 7.351	32.53	48.1±2.0	314.1±13.2	40.5±1.1	116.9±5.6
Lister Tief	25	55.000; 8.150	30.58	54.8±2.3	358.2±15.2	40.6±2.0	133.0±8.4
W of Ringkö	26	56.000; 7.480	33.06	42.6±1.8	278.7±11.8	40.8±1.3	102.8±5.2
	26A	56.001; 7.018	34.07	29.8±1.3	194.8 ± 8.2	42.1±1.1	69.7±3.3
	27	56.000; 6.001	34.93	5.3±0.2	34.6±1.5	45.2±1.4	11.5±0.6
N of Doggerbank	29	56.000 ; 3.000	35.04	1.6±0.1	10.2±0.4	45.8±1.3	3.4±0.2
N of Doggerbank	30	56.001; 2.000	35.10	1.5 ± 0.1	9.8±0.4	44.9 ± 1.1	3.3±0.2
N OLEASIDAIIK	31	56.000; 1.000	34.69	2.1 ± 0.1 2.1 ±0.1	13.8±0.0	43.0 ± 1.1	4.6±0.2
Berwick Bank	32	55.001; 0.015	34.60	2.1 ± 0.1 2.4 ±0.1	15.9 ± 0.0 15.5±0.7	43.03 ± 1.1 43.6 ± 1.1	4.8±0.2 5.4±0.3
Belwick Ballk	33A 33	55 598 : -1 385	34.50	2.4 ± 0.1 2.3+0.1	15.0±0.7	43.0 ± 1.1 44.0 ± 1.2	5.4±0.3
	34	56 600 : -1 000	34.89	1.8+0.1	11.60±0.5	43.0 ± 1.2 43.7+1.9	4 0+0 2
	34A	56.597 : -1.391	34.83	1.9+0.1	12.6+0.5	42.3+1.7	4.5+0.3
	34	56.597 ; -1.391	34.83	1.9±0.1	12.2±0.5	43.6±1.2	4.2±0.2
	36	57.000; 3.300	35.10	1.1±0.1	7.1±0.3	44.3±1.6	2.4±0.1
	37	56.599; 5.003	35.05	1.7±0.1	10.9 ± 0.5	46.2±1.9	3.5±0.2
	38	57.000; 5.600	35.01	1.8 ± 0.1	11.8 ± 0.5	43.7±1.2	4.1±0.2
	38A	57.001; 6.597	34.64	12.6±0.5	82.3±3.4	44.4±1.9	27.9±1.7
Hanstholm	39 (0 m)	57.000; 7.599	34.13	31.2±1.3	204.0 ± 8.6	42.2±1.7	72.8 ± 4.2
	39 (15 m)	57.000 ; 7.599	34.13	27.9 ± 1.2	182.7±7.7	41.3±1.4	66.6±3.6
Skagerrak	40 (0 m)	57.480; 7.599	30.90	17.1±0.7	112.0±4.7	37.8±1.2	44.7±2.3
	40 (249 m)	57.480;7.599	35.20	0.9 ± 0.1	6.2±0.3	47.2±1.7	2.0±0.1
	40 (509)	57.480; 7.599	35.16	1.1 ± 0.1	7.3±0.3	45.9±0.9	2.38±0.11
SW-lich Listafiord	40	58 000 + 5 500	32.00 32.26	11.3±0.3	13.3±3.2 81.6±3.4	41.4±1.0 39.2±1.4	21.43±1.27 31.36±1.60
Eigersundhanken	42	58.000 · 4 599	34.37	5.3+0.2	34.9+1 5	42.6+1.5	12.32+0.65
Midtbanken	43	58.000 : 2.598	34.97	1.4+0.1	9.4+0.4	44.1+1.7	3.20+0.18
Andrew OilFiled	44	57.600 ; 1.300	35.21	0.7 ± 0.1	4.4±0.2	43.9±2.0	1.52±0.09
Bosies Bank	45	57.600; -0.599	35.12	1.2±0.1	7.9±0.3	44.0±1.3	2.70±0.13
	45A	58.001; -2.001	34.99	1.4 ± 0.1	9.4±0.4	43.5±1.1	3.26±0.15
	45	58.303 ; -2.302	34.75	2.5±0.1	16.3±0.7	44.1±1.3	5.58 ± 0.28
	46	58.600 ; -1.299	35.22	0.7±0.1	4.5±0.2	43.6±1.7	1.56±0.09
E-lich Orkneys	47	59.000; 0.000	35.13	0.6 ± 0.1	3.9±0.2	40.08 ± 1.0	1.5 ± 0.1
	48	59.000; 1.003	35.05	1.4±0.1	8.9±0.4	44.8±1.4	3.0±0.1
Utsiragrunnen	49	58.600; 3.000	34.17	4.5±0.2	29.1±1.2	43.9±2.4	10.0±0.7
w-lich Boknafjord	50 (0 m)	59.000; 4.295	32.58	16.0±0.7	104.4±4.4	39.5±1.1	39.8±1.9
w-lich Boknafjord	50 (101 m)	59.000 ; 4.295	35.05	2.2±0.1	14.2±0.6	46.1±1.7	4.65±0.3
E-lich Bergenbank	50 (254 III) 51	59.000 , 4.295 60.000 · 4.201	30.20	0.9±0.1 13.1±0.6	0.00±0.3	40.7±1.2 38.6±1.2	1.99±0.1 33 30±1 7
Bergenbanken	52	60 000 · 4.301	34 79	1 5+0 1	9 85+0 4	43 02+1 1	3 45+0 2
F-lich Shetlands	53	59 6000 300	35.29	0.8+0.1	5 20+0 2	44 2+1 2	1 8+0 1
östl.Falls Gan	901	51.300 : 2 000	35.04	49.2+2 1	321.0+13.0	38.27+1 1	126.4±6 2
Str. von Dover	902	51.050 ; 1.301	35.09	26.5±1.1	172.9±7.3	39.5±1.3	66.0±3.4
O-Meridian	903	50.301 ; 0.002	35.07	38.5±1.6	251.0±10.0	37.3±0.9	101.3±4.8
NE Casquettes	904	50.200 ; -2.000	35.22	6.0±0.3	39.3±1.7	43.4±1.1	13.6±0.6
SSW-lich Start Point	905	49.500 ; -3.599	35.23	4.5±0.2	29.2±1.2	43.3±1.2	10.2±0.5
NW-lich Ouessant	906	49.001 ; -5.600	35.21	-	-	44.6±0.9	-
Cap de la Hague	909	49.550 ; -2.000	35.16	19.5±0.8	127.6±5.4	38.5±1.2	49.9±2.5
N-lich Le Havre	910	50.000 ; 0.000	34.85	103.0±4.4	673.9±28.6	36.9±1.4	275.4±15.3
Cap Griz Nez	911	50.499 ; 1.299	34.68	83.3±3.5	544.3±23.0	39.2±1.2	209.1±10.6

Fig. 2: ¹²⁹I/¹²⁷I isotopic ratios versus ¹²⁷I- and ¹²⁹I-concentrations in the North Sea and in the English.

2. Depth dependence of ¹²⁷I and ¹²⁹I in the North Sea

The depth profiles analysed add further information on the transport and distribution of the ¹²⁹I from the reprocessing plants to the North Sea. Here we compare only 3 same stations (39, 40 and 50) (Tab. 2). At station 39 (Hanstholm, northwestern Denmark) until 30 m depth the concentration of ¹²⁷I and activity concentration of ¹²⁹I are fairly constant with depth and represent 33 % in the depth. But at the same station Michel et al. 2012 found, particularly for ¹²⁹I, more ¹²⁹I (80 %) under 15 m as surface water (0 m). At station 40 (Skagerrak) and 50 (Boknafjord) the situation is other. At station 40 the concentration of ¹²⁷I (38 ng g⁻¹) at surface is relatively low, while at 200 m and 512 m depth it was 46 ng g⁻¹. The concentrationof ¹²⁹I at the surface (211 mBq m⁻³) is 30 times higher than at 200 and 512 m depth. By Michel et al. 2012 the activity concentration of ¹²⁹I at the surface is only 5 times higher than at 200 and 512 m depth. The same is observed at station 50. Generally ¹²⁹I and thus ¹²⁹I/¹²⁷I ratios are higher at the surface than at depth.

Tugust 20	Denth	127 T	129 T	¹²⁹ I/ ¹²⁷ I ratio		
Station	[m]	$[ng g^{-1}]$	$[mBq m^{-3}]$	[10 ⁻⁸]	% ¹²⁷ I	% ¹²⁹ I
	0	40	204	72	24	26
39	0	42	204	/3	34	36
57	15	41	183	67	33	32
	32	41	180	67	33	32
	_					
	0	38	211	45	29	94
40	200	47	6	2	36	3
	512	46	7	2	35	3
	0	40	104	40	20	0.4
50	0	40	104	40	30	84
	100	46	14	5	35	11
	230	46	6	2	35	5

Tab. 2: ¹²⁷I, ¹²⁹I and ¹²⁹I/¹²⁷I ratios isotopic in sea water depth from the North Sea during the August 2009 cruise.

3. ¹²⁷I and ¹²⁹I in precipitation and their fall-out in Northern Germany

The mean concentrations of ¹²⁷I in the precipitation from Lower Saxony, North Germany are in 2009 between 2.4 and 5.1 ng g⁻¹, the mean activity concentration of ¹²⁹I and ¹²⁹I/¹²⁷I isotopic ratios are between 0.4 and 2.3 fg g⁻¹ and between 1.1 x 10⁻⁷ and 5.7 x 10⁻⁷, respectively (Tab. 3). The highest values of ¹²⁹I activity concentrations as well the ¹²⁹I/¹²⁷I isotopic ratios were in precipitation from Norderney, hier we see the direct influence of the North Sea via sea-spray.

The concentration of ¹²⁷I as well the activity concentration of ¹²⁹I in through-falling precipitation from Buer-Ostenwald are the two to five times higher than in open-field precipitation, but are justly two time for the ¹²⁹I/¹²⁷I ratios. We can explain that with the dry precipitation of iodine isotopes on the leaves of the trees for the though fall Sample. So we haven't observed grand difference between ¹²⁹I/¹²⁷I ratios from the dry and wet precipitation. Generally the ¹²⁹I/¹²⁷I isotopic ratios are in the region I justly douppelt than in the other regions, but are the same values in the region II and IV.

Treeplation in Lower Suxony, Germany							
compling	Precipitation	^{127}I	^{129}I	¹²⁹ I/ ¹²⁷ I ratios			
sampning	art	$[ng g^{-1}]$	$[fg g^{-1}]$	$[10^{-7}]$			
Norderney	Open-field	4.2±1.2	2.3±0.6	5.7±1.5			
Buer Osterwald	Open-field	5.1±3.0	0.5±0.3	1.1±0.5			
Buer Osterwald	through-falling	9.9±4.3	2.4 ± 0.9	2.5±0.8			
Siemen	Open-field	2.4 ± 0.8	0.4 ± 0.1	1.7±0.3			

Tab. 3: ¹²⁷I, ¹²⁹I and ¹²⁹I/¹²⁷I isotopic ratio in 2009 at different sampling Precipitation in Lower Saxony, Germany

Today, the North Sea appears as the dominant source of air-borne iodine in coastal regions of Northern Germany due to the liquid emissions of the European reprocessing plants. Tab. 4 presents the annual precipitation of ¹²⁷I and ¹²⁹I. We see the different deposition rates of ¹²⁷I as well ¹²⁹I in open-field and through-falling precipitation and it is in through-fall four times high than in open-field, which are interpreted by us as being differently influenced by wet and wet-plus-dry fallout (Szidat et al. 2000b, Ernst 2003, Michel et al. 2004-2012). During the years 1997 - 2009, the geometric mean annual ¹²⁹I deposition rates in regions II and III of Lower Saxony were 3.1 mBq m⁻² a⁻¹ for open-field precipitation and 12.2 mBq m⁻² a⁻¹ for through-falling precipitation. At the Norderney in the region I near the North Sea the annual ¹²⁹I deposition rates was 10.4 mBq m⁻² a⁻¹ and this is higher than thus of the other regions, which due to the influence of sea-spray at the coast.

Sunony, Commany				
Sampling precipitation	precipitation in mm a ⁻¹	annual ¹²⁷ I deposition rate in mg m ⁻²	annual ¹²⁹ I deposition rate in mBq m ⁻²	
Norderney Open-field	742	$2.7 \ge 1.4^{\pm 1}$	10.4 x 1.4 ^{±1}	
Buer-Osterwald Open-field	775	1.6 x 1.7 ^{±1}	3.1 x 2.0 ^{±1}	
Buer-Osterwald through-falling	775	$5.4 \ge 1.5^{\pm 1}$	$12.8 \ge 1.5^{\pm 1}$	
Sessen Open-field	775	$1.2 \ge 1.4^{\pm 1}$	3.0 x 1.6 ^{±1}	
Sessen through-falling	775	$4.0 \ge 1.2^{\pm 1}$	11.4 x 1.3 ^{±1}	
Siemen Open-field	675	1.4 x 1.5 ^{±1}	2.2 x 1.7 ^{±1}	

Tab. 4: The annual ¹²⁷I and ¹²⁹I deposition rates during 1997 – 2009 at different sampling in Lower Saxony, Germany.

Fig. 3: Time series of annual ¹²⁹I deposition rates in mBq m⁻² at Norderney (region I), Buer-Osterwald (region III) and Siemen (region IV) in Northern Germany. In addition, the annual sums of the Sellafield and La Hague gaseous and liquid releases in kg are given.

Fig. 3 shows the total liquid and gaseous releases from Sellafield and La Hague and the annual ¹²⁹I deposition rates in Northern Germany. After 1996, the total liquid releases from Sellafield and La Hague is nearly constant with slightly decreases. Between 1996 and 2010 the total releases gaseous decreases rapidly than the total liquid releases. On the other side we see the same pattern the annual ¹²⁹I deposition rates the precipitation and the total liquid releases from Sellafield and La Hague, and different pattern with the total gaseous releases.

4. Comparison the results of ¹²⁹I and ¹²⁹I/¹²⁷I isotopic from 2005 and 2009

In this study, we have the possibility to compare the results of iodine in the North Sea of 2009 with those of 2005. The concentrations of ¹²⁷I in the North Sea in 2005 are (30-57) ng g⁻¹ with mean of 40.1 ng g⁻¹ and 13.9 % as relative standard derivation (RSD). In comparison with in 2009, the concentrations of ¹²⁷I are between (38-47) ng g⁻¹ with mean of 43.1 ng g⁻¹ and 4.6 % as RSD. Despite the different concentration of ¹²⁷I in 2005 and 2009 shows the mean value of the ocean (45 – 60 ng g⁻¹).

The first observation in Fig. 4 is seen to be the higher activity of ¹²⁹I of 2005 than of 2009 in the near from La Hague and in the English Channel. General shows the compared of ¹²⁹I-activity and ¹²⁹I/¹²⁷I isotopic ratios the same pattern.

Fig 4: ¹²⁹I activity concentrations in mBq m⁻³ in 2005 and 2009 in the North Sea and in the English Channel.

5. Conclusion

- The results of the investigation in 2009 reveal high ¹²⁹I contaminations in the North Sea and in the English Channel.
- ¹²⁹I from La Hague is transported through the English Channel and to the North Sea.
- Due to a higher dilution and a more complex current system, the ¹²⁹I signal from Sellafield is not so clear-cut in the North Sea.
- The ${}^{129}\text{I}/{}^{127}\text{I}$ isotopic ratios with a maximum of 2.7 x1 0⁻⁶ are at least four orders of magnitude higher than the natural isotopic ratio of 1.5 x 10⁻¹².
- The variability of the ${}^{129}I/{}^{127}I$ isotopic ratios is exclusively determined by admixture of anthropogenic ${}^{129}I$.
- Time series of the iodine isotopes in precipitation in Northern Germany demonstrate the decisive role of the marine discharges for the on-going ¹²⁹I atmospheric fallout in Western Europe.
- ¹²⁹I is presently not of radiological significance, but it can be regarded as an indicator of the human long-term impact on the environment: ¹²⁹I can be used as tracer.

6. Acknowledgements

The authors thank J. Döhring (NLWKN) for supplying the samples of precipitation and C. Vogt (Universität Hannover) for the opportunity to perform the ICP-MS measurements.

7. References

Aldahan A, Alfimov V, Possnert G (2007): The ¹²⁹I anthropogenic budget: sources and sinks. Appl Geochem; 22: 606-18.

Carter M and Moghissi A (1977): Three decades of nuclear testing. Health Phys 33: 55-71.

Chamberlain A (1991): Radioactive aerosols. Cambrige University Press.

Edward R (1962): 129I: its occurrence in nature and its utility as a tracer, Sci 137: 851-853.

Edwards R and Rey P (1968): Terrestrial occurrence and distribution of 129I, Atomic Energy Commission, NYO-3624-3 Final Contract Report.

Eisenbud M and Gesell T (1997): Environmental radioactivity. 4. Ed. San Diego: Academic Press.

- Ernst T, Szidat S, Handl J, Jakob D, Michel R, Schnabel C et al. (2003): Migration of iodine-129 and iodine-127 in soils. Kerntechnik 68 (4) 155-167.
- Fehn U, Holdren G, Elmore D, Brunelle T, Teng R and Kubik P (1986): Determination of natural and anthropogenic 129I in marine sediments, Geophys Res Lett, 13 137-139.
- Hou X, Aldahan A, Nielsen SP, Possnert G, Nies H and Hedfors J (2007): Speciation of ¹²⁹I and ¹²⁷I in seawater and implication for sources and transport pathways in the North Sea. Environ Sci Technol; 41: 5993-9
- Kilius L, Rucklidge J and Soto C (1994): The dispersal 129I from the Columis River estuary. Nucl Instrum Methods Phys Res. B29: 393-7
- Kohman T. P and Edwards R. R (1966): 129I as a geochemical and ecological tracer, Department of Chemistry, Carnegie Institut of Technologiy, NYO-3624-1.
- Michel R, Daraoui A, Gorny M, Jakob D, Sachse R, Tosch L, Nies H et al. (2012): 129I and 127I in European seawaters and in precipitation from Northern Germany. Sci Total Envir 419: 151-169.
- Michel R, Klipsch K, Ernst Th, Gorny M, Jakob D, Vahlbruch J, Synal H.-A, Schnabel C (2004): Ableitung von radioökologischen Parametern aus dem langfristigen Eintrag von Iod-129 (in German). Abschlussbericht zum Forschungsvorhaben StSch 4285. BMU 650, ISSN 1612-6386.
- Moran J. E, Fehn U and Teng R. T. D (1998): Variations in 129I/127I ratios in recent marine sediments: evidence for a fossil organic component, Chemical Geology, 152 193-203.
- Nies H, Goroncy I, Hermann J, Michel R, Daraoui A, Gorny, et al. (2010): Kartierung von ⁹⁹Tc, ¹²⁹I und ¹²⁷I im Oberflächenwasser der Nordsee (in German). Abschlussbereicht zum Forschungsvorhaben StSch 4881. Schriftenreihe Reaktorsicherheit und Strahlenschutz, BMU.
- Schink D. R, Santschi P. H, Corapcioglu O and Fehn U (1995): 129I in Gulf of Mixico waters. Earth Planet Sci Lett 8: 131-135.
- Schmidt A, Schnabel C, Handl J, Jakob D, Michel R, Synal A.-H, Lopez J, Suter M (1998): On the analysis of ¹²⁹I and ¹²⁷I in environmental materials by accelerator mass spectrometry and ion chromatography. Sci Total Environ 233: 131-156.
- Szidat S, Schmidt A, Handl J, Jakob D, Michel R, Synal H, Schnabel C, Suter M, Lopez-Gutierrez J.M and Städe W (2000b): ¹²⁹I: Sample preparation, quality control and analyses of pre-nuclear materials and of natural waters from Lower Saxony, Germany. Nuc Instrum Methods in Phys Res B172: 699-710.
- UNSCEAR (1982): United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly of the United Nations.
- Yiou F, Raisbeck G. M, Zhou Z. Q and Kilius L. R (1994): ¹²⁹I from nuclear fuel reprocessing, potential as an oceanographic tracer, Nuc Instrum Methods Phys Res B92: 436-439.