Transfer of wet-deposited radiocaesium and radiostrontium in spring oilseed rape and spring wheat

Stefan Bengtsson* and Klas Rosén Swedish University of Agricultural Sciences, Department of Soil and Environment, PO Box 7014, SE-75007 Uppsala, Sweden *stefan.bengtsson@slu.se

1. Introduction

SLL

- Limited amount of information about deposition on growing crops.
- Data from the trial can be used to calculate transfer factors.

3. Methods

2. Objectives

- How depositing radionuclides in growing crop stand influence the concentration in edible parts.
- Degree of the influence is dependent on development stage, weather, and length of the time period prior to harvest.
- Conducted at an agricultural field at
 Uppsala, Sweden during growing season
 2010 and 2011 (only year 2010 is
 presented).
 Analysed concentration of wet deposited
 ¹³⁴Cs and ⁸⁵Sr in seeds and grains on
 spring oilseed rape and spring wheat.

- The radionuclides were deposited at five different development stages using rainfall simulator.
- Dried biomass samples were measured for radioactivity with High-Purity Germanium (HPGe) detectors.

5. Conclusions

Crop	Radio-	Deposition (/	n)	Concentration	Transfer factor
	nuclide	event		(\overline{x}) ±S (Bq kg ⁻¹)	$(\overline{x}) (m^2 kg^{-1}) \times 10^{-4}$

	Oilseed	¹³⁴ Cs	1	3	8±2	3.13
	Oilseed	¹³⁴ Cs	2	3	127±114	47.3
	Oilseed	¹³⁴ Cs	3	3	123±118	47.3
	Oilseed	¹³⁴ Cs	4	3	89±14	33.4
	Oilseed	¹³⁴ Cs	5	3	325±113	105
	Wheat	¹³⁴ Cs	1	2	4±2	1.68
	Wheat	¹³⁴ Cs	2	3	84±64	31.4
	Wheat	¹³⁴ Cs	3	3	265±141	102
	Wheat	¹³⁴ Cs	4	3	348±123	130
	Wheat	¹³⁴ Cs	5	3	318±266	103
	Oilseed	⁸⁵ Sr	1	2	6±6	1.42
	Oilseed	⁸⁵ Sr	2	0	n.d.	n.d.
	Oilseed	⁸⁵ Sr	3	1	20.52	4.98
	Oilseed	⁸⁵ Sr	4	2	23±14	5.83
	Oilseed	⁸⁵ Sr	5	3	248±94	49.7
	Wheat	⁸⁵ Sr	1	1	4.32	1.03
	Wheat	⁸⁵ Sr	2	0	n.d.	n.d.
	Wheat	⁸⁵ Sr	3	2	75±40	18.3
	Wheat	⁸⁵ Sr	4	3	165±45	42.7
	Wheat	⁸⁵ Sr	5	3	560±427	112

- In both crops, the transfer of ¹³⁴Cs was generally higher than for ⁸⁵Sr.
- Can be explained by difference in movability between the two radionuclides inside the plant.
- Transfer was higher for both
 radionuclides in spring wheat grains
 than in spring oilseed rape seeds.