OPTIMIZATION OF A BUNKER FOR GAMAGRAPHY OF PIPES WITH A DIAMETER OF 2m

Sahyun, Adelia ${ }^{1,2,5}$; Sordi, Gian-Maria ${ }^{1,2}$; Ghobril, Carlos N. ${ }^{1,3}$; Perez, Clarice F.A. ${ }^{4}$; Ribeiro, Kenia A.M. ${ }^{5}$
${ }^{1}$ ATOMO - Radioproteção e Segurança Nuclear S/S Ltda, São Paulo, SP, Brasil adelia@atomo.com.br
${ }^{2}$ Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP, São Paulo, SP, Brasil
${ }^{3}$ Instituto de Economia Agrícola - Governo de São Paulo - IEA, São Paulo, SP, Brasil
${ }^{4}$ Centro Tecnológico da Marinha em São Paulo, - CTMSP, São Paulo, SP, Brasil
${ }^{5}$ Associação Brasileira de Ensaios Não Destrutivos e Inspeção - ABENDI, São Paulo, SP, Brasil

DATA

Irradiated Material: Pipes with a diameter up to 2 m , and up to, 6 m length
Source: $2.22 \times 10^{12} \mathrm{~Bq}(60 \mathrm{Ci})$ of ${ }^{192} \mathrm{Ir}$
Pipes, material thickness: 1 to 4.4 cm of iron
Supervised Area: of up tol m distance
Non Designated Area: up to 1 m from the bunker

OPTIONS

a) that the pipes can enter into the bunker from the front;
b) from behind, by means of a rail road car;
c) from the ceiling, using a crane;
d) from the ceiling sliding over the rail road, in this case the pipe would enter from the front or from behind the bunker;
e) the pipe could enter by the lateral with a removable sliding wall

CALCULATION

It was used the computer code "MEGA SHIELD VERSION 3.0"

RESULT

Thickness and External Dose for
Walls and Gate

Wall and Gate	Material	Thickness $(\mathbf{c m})$	Dose $(\mathbf{m R} / \mathbf{h})$
A, B, C	Concrete	80.0	4.13×10^{-2}
D(Gate)	Concrete	80.0	4.13×10^{-2}

Thickness and Dose for Ceiling

Ceiling		
Material	Thickness $(\mathbf{c m})$	Dose $(\mathbf{m R} / \mathbf{h})$
Concrete	28.0	5.00×10^{-2}

Floor: Do not need shielding

BEST OPTIONS

(a) and (b) at a cost of US\$ $\mathbf{1 2 0 , 0 0 0 . 0 0}$

