

## A MODEL TO MEASURE THE DOSIMETRIC RISKS OF GAMMAGRAPHIC INSPECTIONS

Philippe François (EDF/R&D/MRI)\*, Sylvie Jahan (EDF/R&D/STEP)\*, Jean-Gabriel Léonard (EDF/DPN/GPRE)°, Gérard Cordier (EDF/DPN/EM)° \*EDF R&D, 6 quai Watier, 78401 Chatou cedex FRANCE ° EDF DPN, Cap Ampère, 1 place Pleyel, 92282 Saint-Denis cedex FRANCE

| istan | Entering rest<br>ce Time                | ricted area / c                               | perator incident                                       | / hand dose/ orp                              | han source                            |                                                                     |
|-------|-----------------------------------------|-----------------------------------------------|--------------------------------------------------------|-----------------------------------------------|---------------------------------------|---------------------------------------------------------------------|
| ļ     | Source<br>Ir 192<br>4.4 tBg<br>(120 Ci) | 15 s                                          | 2 mn 30 s                                              | 30 mn                                         | 4 h                                   | 1 week                                                              |
|       | 1 cm<br>5 000 000<br>mSv/h              | 20Sv<br>only hands.<br>necrosis<br>Saintes 81 | 200 Sv                                                 |                                               |                                       |                                                                     |
|       | 10 cm<br>5000<br>mSv/h                  | 200 mSv<br>not yet<br>bio.effects.            | 2 Sv<br>severe lesions<br>Chili 05,<br>iran 96         | 20 Sv<br>whole body<br>dead<br>Perou 99       | 200 sv                                |                                                                     |
|       | 1 m<br>500<br>mSv/h                     | 2 mSv<br>incident<br>criterion                | 20 mSv annual<br>limit<br>Blayais 01<br>Flamanv. 03,09 | 200 mSv<br>cas enveloppe<br>pendant<br>le tir | 2 Sv<br>severe<br>lesions<br>Dakar 06 | 20 Sv dead<br>Mexico 62<br>Setif 78<br>Casablanca 84<br>Le Caire 00 |
|       | 10 m<br>5<br>mSv/h                      | 0.02 mSv<br>OK                                | 0.2 mSv<br>OK                                          | 2 mSv<br>Criterion<br>incident<br>reporting   | 20 mSv<br>annual limit                | 200 mSv                                                             |

**STEP 1** : Table indicating typical dose magnitudes :

- red : orphan source,
- orange : hand dose,
- green : entering the restricted area,
- yellow : operator incident.

Each case is characterized by a dose corresponding to a distance and a duration of exposure by a conventional Ir-192 source of 4.4 TBq.





The scene of a gammagraphic inspection area. The operator works within a zone which is marked off-limits.

|                                | Very fa                                 | vorable transition/ favorable / unfavorable / very unfavorable |                                          |                                         |        |         |  |  |
|--------------------------------|-----------------------------------------|----------------------------------------------------------------|------------------------------------------|-----------------------------------------|--------|---------|--|--|
| sance<br>Sc<br>Ir<br>4.<br>(12 | Time<br>Durce<br>192<br>4 tBq<br>20 Ci) | →<br>15 s                                                      | 2 mn 30 s                                | 30 mn                                   | 4 h    | 1 week  |  |  |
| 1 (<br>5 (<br>m                | cm<br>000 000<br>Sv/h                   | 20Sv                                                           | 200 Sv                                   |                                         |        |         |  |  |
| 10<br>50<br>m                  | ) cm<br>100<br>Sv/h                     | 200 mSv<br>(initiator<br>hand dose)                            | 2 Sv                                     | 20 Sv                                   | 200 Sv |         |  |  |
| 1 i<br>50<br>m                 | m<br>10<br>Sv/h                         | 2 mSv<br>(initiator<br>operating<br>incident)                  | 20 m/Sv                                  | 200 mSv<br>(initiator<br>orphan source) | 2 Sv   | 20 Sv   |  |  |
| 10<br>5<br>m                   | ) m<br>Sv/h                             | 0.02 mSv                                                       | 0.2 mSv<br>(initiateur<br>entering area) | 2 mSv                                   | 20 mSv | 200 mSv |  |  |

**STEP 2** : Representation of the main possible transitions between different cases in the table of risks (from green : very favorable, to red : very unfavorable).

**STEP 3** : Building an « event tree » model showing the different possible aggravation scenarios. Each scenario is characterized by a dose, a probability and a risk (which is the product of the dose by the probability).



**STEP 5** : Many possible applications : indicators, ranking of incidents based on the risk, anticipation of severe accidents, evaluation of protection devices, safety organization, etc. In this case, the generalization of dosimeters is compared with an automatic detection device that informs the team of the operator of an intrusion into the restricted area. The detection device for intrusions (orange) is the most effective protection compared to the option of equipping all staff with an alarm dosimeter (green). These two options are compared with the situation of reference currently in use on sites (blue).



**STEP 4** : Comparison of the risks related to different situations. In this case, the main risk is related to the activity of the operator (yellow). It is more important than entering the restricted area (green) or orphan sources (red). The risk is expressed as a group of values in six dimensions from 0.2 mSv to 20 Sv.





## Countermeasures effectiveness

Looking beyond the gammagraphic controls : we can generalize the method to all dosimetric activities in order to achieve a global vision and structuring of all radiological hazards present in Nuclear Power Plants. Each activity is placed in a chart (dosimetric effectiveness versus countermeasures). Three regions are defined (R & D needed, deployment of industrial solutions or simple monitoring). Thus, we can define the most effective strategy to reduce dosimetric risks.



Contact EDF (France) :

phil.francois@edf.fr, sylvie.jahan@edf.fr (EDF R&D) gerard.cordier@edf.fr, jean-gabriel.leonard@edf.fr (EDF DPN)