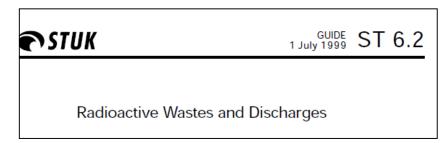
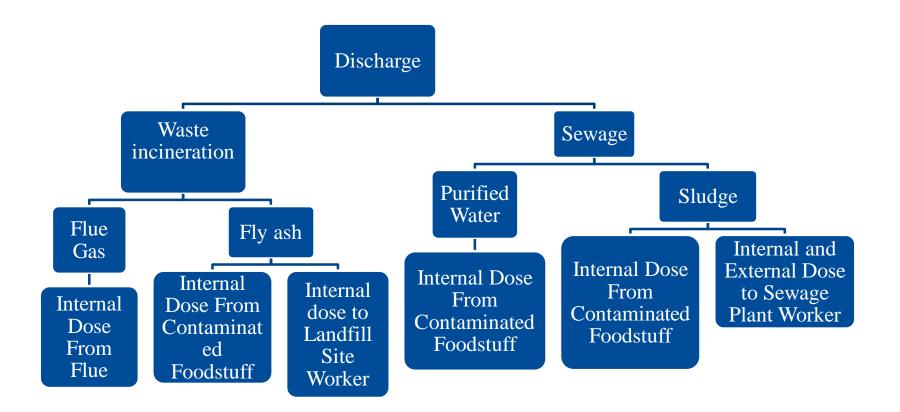
Doses to Public Arising From the Use of Radioisotopes in Radionuclide Laboratories and Hospitals in Finland


Santtu Hellstén Radiation and Nuclear Safety Authority Finland

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Purpose of the study

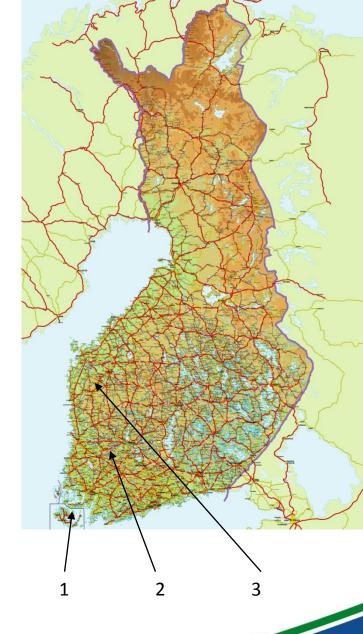

• The regulatory guide ST 6.2" Radioactive wastes and discharges" is set for renewal

- The desire to get a "Bq to Sv" calculation chain
- No reason to suspect surrent limits are too high
- Estimates for both adults and children
- Real disposal activities were used

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Exposure routes considered in the study

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY


Santtu Hellstén / IRPA13 31.7.2015

3

Selected locations

- 1. Turku
 - Waste incinerator plant
 - Flue gas
 - Ash deposited at landfill
- 2. Tampere
 - Liquid waste from laboratories, hospital
 - Purified water pumped to lake Pyhäjärvi
 - Sludge used in farming
- 3. Seinäjoki
 - Same as Tampere exept cleaned water pumped to river Seinäjoki
- City and site specific data used
- Stack height, river flow, ...

Example - Tampere

- Waste from radionuclide laboratory / hospital enters the sewage system
 - For hospital discharges, actual reported values for Tampere University Hospital were used
 - For laboratories, values for Turku were used.
- Sewage is treated in the local sewage water treatment plant
- Radionuclides are divided between sludge and purified water based on nuclide specificdistribution coefficient
 - If a coefficient was found in literature, it was used
 - If no coefficient was found, all radionuclides were assumed to go
 <u>both</u> sludge and purified water -> conservative result

Example – Tampere, contd.

- <u>Purified water</u> is pumped into the lake Pyhäjärvi, where it dilutes and is consumed for
 - Irrigation -> exposure through consumption of irrigated vegetables
 - Fishing -> exposure through consumption of fish
- Sludge is used for soil improvement in farming
 - Internal and external exposure from soil improvement
 - Internal exposure through consumption of
 - Meat, milk, grain
- Consumption values were taken from literature
 - E.g.

$$C_{crops} = C_{final} \times CF_{crops} \times e^{(-\lambda t_{crops})} \times f_{red}$$

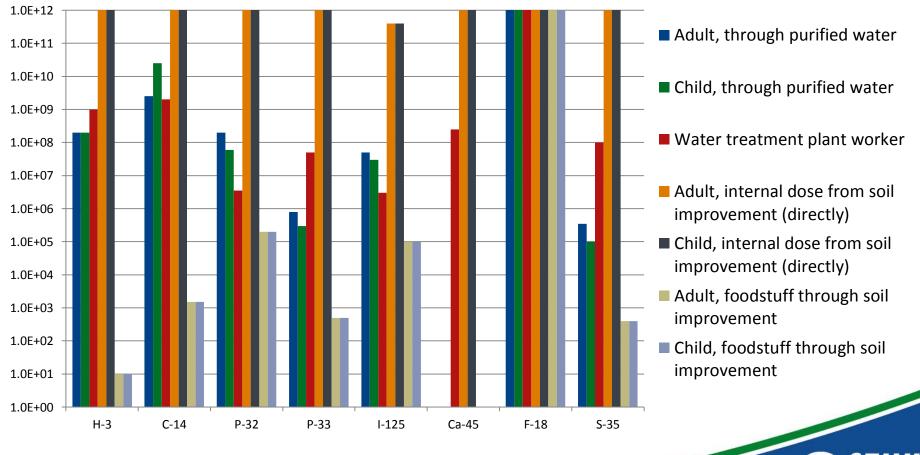
 $E_{crop} = C_{crops} \times IR_{crops \times} DF_{ing}$

Results – Doses from Tampere University Hospital

Nuclide:	Cr-51	F-18	I-123	I-131	In-111	P-32 (*	Se-75	Tc-99m	Y-90	
Annual Dose, (Sv/a)										Total Dose: (Sv/a)
Adult, purified water	1,E-14	7,E-107	1,E-25	4,E-09	2,E-12	5,E-09	5,E-13	6,E-42	3,E-14	9,E-09
Child, purified water	4,E-14	2,E-106	4,E-25	1,E-08	4,E-12	1,E-08	9,E-13	1,E-41	9,E-14	3,E-08
Sewage tratment plant worker	9,E-10	7,E-20	6,E-08	<u>6,E-06</u>	2,E-07	2,E-07	2,E-10	2,E-07	7,E-08	7,E-06
Adult, sludge used as soil improvement	5,E-12	7,E-187	5,E-33	9,E-07	6,E-14	<u>5,E-06</u>	1,E-09	2,E-59	3,E-13	6,E-06
Child, sludge used as soil improvement	1,E-11	2,E-186	2,E-32	<u>3,E-06</u>	2,E-13	<u>2,E-05</u>	3,E-09	5,E-59	1,E-12	2,E-05

(* P-32: half life of 14 days

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY


Santtu Hellstén / IRPA13 31.7.2015

7

Results – Doses from a hypotetical laboratoty in Tampere

The ratio between a discharge that causes a 10 μ Sv annual dose and the exemption limit of the nuclide

SÄTEILYTURVAKESKUS • STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Summary

- A small study was performed to aid in the renewal of the regulatory guide ST 6.2: Radioactive wastes and discharges
- An Excel spreadsheet was developed that can be used in different scenarios for dose estimation
- For laboratory discharges the study confirmed that
 - The current discharge limits do not result in overexposure of the population, as expected
 - The use of nuclide specific exemption levels as a criteria for regulatory limits for annual discharges from radionuclide laboratories is justified
- The results are to be used in the renewal of the guide ST 6.2

