

Assessment of the Impact on the Irish Public Arising from Liquid Discharges from Potential New Build Power Plants in the UK

Overview

- New Build in the UK
- Source Term for this work
- Routine discharges Methodology and Results
- Non-routine discharges Methodology and Results
- Conclusions

New Build in the UK

- 8 Sites Identified as being suitable for new nuclear development
- 5 sites on West Coast of UK investigated

Liquid Discharges

Radionuclide	Routine Discharge (GBq yr ⁻¹)	Radionuclide	Routine Discharge (GBq yr ⁻¹)	Radionuclide	Routine Discharge (GBq yr ⁻¹)
H-3	75,000	I-135	0.0525	Am-243	0.000037
C-14	95	I-131	0.05	As-76	0.000037
Co-60	3	I-132	0.0438	Br-82	0.000037
Co-58	2.07	Mo-99	0.0416	CI-36	0.000037
Ni-63	1.14	La-140	0.0394	Cm-242	0.000037
Fe-55	1.06	Tc-99m	0.0394	Cm-244	0.000037
Cs-137	0.945	Ba-140	0.0306	Nb-94	0.000037
Sb-125	0.815	Zn-65	0.0219	Np-237	0.000037
Ag110m	0.57	Cs-136	0.0203	Pu-238	0.000037
Cs-134	0.56	Zr-95	0.0151	Pu-239	0.000037
Sb-124	0.49	I-134	0.0129	Pu-240	0.000037
Mn-54	0.27	Fe-59	0.0109	Pu-242	0.000037
Ru-103	0.263	W-187	0.00656	Rb-86	0.000037
Te-123m	0.26	Sr-89	0.00525	Ru-106	0.000037
Ce-144	0.175	Rb-88	0.000853	Sb-122	0.000037
Pr-144	0.175	Sr-90	0.000535	Sn-117m	0.000037
Cr-51	0.101	Y-91	0.000199	U-234	0.000037
Na-24	0.0831	Pu-241	0.000178	U-235	0.000037
I-133	0.0634	I-129	0.000037	U-238	0.000037
Nb-95	0.06	Am-241	0.000037		

Routine Discharges Methodology

- CREAM Consequences of Releases to the Environment: Assessment Methodology
- PC-CREAM-08 software
 - Evaluates radiological consequences of discharges
 - DORIS To model dispersion of radionuclides
 - MARINE ASSESSOR To determine dose to Irish population based on outputs from DORIS

Routine Discharges Methodology

- Activity concentrations in 50th year in:
 - Seawater
 - Sediment
 - Biota
- DORIS compartments
 - Irish Sea West (Blue)
 - Irish Sea South (Red)

Routine Discharges Dose Calculation

- Exposure pathways
 - Ingestion of seafood: fish, crustaceans, molluscs
 - Inhalation of seaspray
 - External irradiation: beach sediments, fishing gear (gamma and beta)
- Adult seafood consumer groups:
 - Consumer Group A
 - Consumer Group B RPII Habits Survey
 - Typical Seafood Consumer IUNA 2011

Routine Discharges: Habits

Exposure Pathway	Group A		Grou	Group B		Typical Consumer	
Seafood Consumption (kg yr ¹)	Fish	26	Mussels	20	Fish	8.4	
	Crustaceans	10	Oysters	5	Crustaceans	0.5	
					Molluscs	0.1	
Time on beach (h yr¹)	-		41	0	410		
Handing Fishing Equipment (h yr¹)	2500		73	730		-	

Routine Discharges: Doses

Discharge Location	Group A Irish Sea West	Group A Irish Sea South	Group B Irish Sea West	Group B Irish Sea South	Typical Consumer Irish Sea West	Typical Consumer Irish Sea South
Sellafield	1.85E-02	6.97E-03	1.33E-02	4.98E-03	5.03E-03	1.87E-03
Heysham	1.85E-02	7.17E-03	1.33E-02	5.12E-03	5.02E-03	1.92E-03
Wylfa	3.81E-02	1.26E-02	2.73E-02	9.02E-03	1.04E-02	3.41E-03
Oldbury	1.90E-04	2.08E-04	1.35E-04	1.48E-04	5.06E-05	5.56E-05
Hinkley Point	1.91E-04	2.10E-04	1.36E-04	1.50E-04	5.08E-05	5.61E-05

Individual effective dose (µSv.yr⁻¹) after 50 years of routine releases

Largest Doses:

- From Wylfa Site
- From consumption of seafood (95%)
- C-14 most significant contributor (90%)

Non-routine Discharges

- Source Terms
 - Scenario 1: One year of routine discharges released in one week
 - Scenario 2: Total volume of reactor coolant discharged in one week

Radionuclide	Total Activity (GBq)	Radionuclide	Total Activity (GBq)
I-133	63,000	Ni-63	930
I-135	42,000	Sr-89	900
I-131	33,000	Ag110 m	510
Cs-138	30,000	Mn-54	420
I-132	24,600	Sb-122	330
H-3	11,100	Co-60	174
Cs-136	11,100	Sb-124	168
Cs-134	10,200	Fe-59	108
I-134	9,000	Sb-125	30
Cs-137	7,500	Sr-90	5.7
Co-58	3,000	C-14	3.9
Cr-51	2,850		

Non-routine Discharges: Dispersion Modelling

- Estimate activity concentrations and transit times of radionuclide discharges from the proposed sites to selected locations on the east coast of Ireland.
- Conservative behaviour
- Simulates tides, winds, density gradients on currents
- Interseasonal & interannual effects

Historic and Model Time series at Balbriggan

Non-routine Discharges

- Highest seawater activity observed for Springtime release from Wylfa
- A 604.8 TBq discharge results in a seawater activity concentration of 191 mBq l⁻¹ in Dundalk 161 days later
- Dilution factor, based on outcome from NUIG model:

$$DF = \frac{191 \times 10^{-3} \, Bq/l}{604.8 \times 10^{3} \, Gbq} = 3.1581 \times 10^{-7} \left(\frac{Bq/l}{GBq}\right)$$

Non-routine Discharges: Peak Seawater Activity Concentration

$$C_{Seawater}^{i} = D_{i} \times DF \times e^{-\lambda_{i}t}$$

 $C^{i}_{Seawater}$ is the peak seawater activity concentration for radionuclide i

 D_i is the total activity discharged for radionuclide i (GBq)

DF is the dilution factor (3.1581 x 10^{-7} Bq I^{-1} /GBq)

 λ_i is the decay constant for radionuclide *i* (days⁻¹)

t is the time taken to reach the peak seawater activity at Greenore

i.e. 161 days

Non-routine Discharges: Activity Concentrations in Biota and Sediment

- Radioactivity concentrations in biota and sediment:
 - Determined using appropriate concentration factors (CF) and sediment concentration factor (k_d)
 - Determined using same factors in the PC-CREAM-08 software for consistency

Non-routine Discharges: Dose Assessment

- Using CREAM methodology in MS Excel based on PC-CREAM-08 documentation
- Same exposure pathways and consumer groups as routine discharges

Non-routine Discharges: Dose Assessment

	Total Dose (µSv)	
Group A	Group B	Typical Consumer
1.31 x 10 ⁻²	1.03 x 10 ⁻²	4.09 x 10 ⁻³

- Scenario 1
 - Largest dose to consumer group A
 - Ingestion of seafood the dominant exposure pathway (99%)
 - C-14 the radionuclide of most importance

Non-routine Discharges: Dose Assessment

	Total Dose (µSv)	
Group A	Group B	Typical Consumer
3.45 x 10 ⁻¹	9.41 x 10 ⁻¹	7.45 x 10 ⁻¹

Scenario 2

- Largest dose calculated is to consumer group B.
- Principal exposure pathway is exposure to beach sediment (gamma)
- Radionuclide of most importance is Mn-54

Conclusions

- Routine:
 - Negligible impact on Irish public
- Non-routine:
 - Even with a very conservative dose assessment, impact on Irish public is negligible
- Both
 - For all scenarios outlined doses similar to those received from current inventory in Irish Sea

Routine Discharges: Doses

