

Andrzej Wojcik Centre for Radiation Protection Research

All happy families resemble each other, each unhappy family is unhappy in its own way

LEO TOLSTOY, Anna Karenina

We can paraphrase this: Every radiation accident is unique and it is not possible to predict how the next accident will look like

What do we do if there is a large event with thousands of people potentially exposed? Expansion of use of First question: who was exposed? **TODAY'S WORLD:**

21st century threats

Multi-disciplinary biodosimetric tools to manage high scale radiological casualties MULTIBIODOSE

Were they exposed to radiation?

Aim: to analyse a variety of biodosimetric tools and to adapt them to different mass casualty scenarios.

The main objective is to develop triage tools. Consequently, we do not aim at PRECISION of dose-estimate, but at SPEED of performance.

IRPA 13, Glasgow, May 2012

CONTACT INFO

Multibiodose Coordinator: Andrzej Wojcik, Prof. D.Sc. Centre for Radiation Protection Research Department of Genetics, Microbiology and Toxicology Stockholm University Svante Arrhenius väg 20C, room E515 106 91 STOCKHOLM SWEDEN Tel: +46 8 16 1217 Fax: +46 8 16 4315 Tel mobile: + 46 762 122 744

www.multibiodose.eu

Stockbolm University	Stockholm University (SU), Sweden
Sundersant for Elemeneschalt	Bundesamt für Strahlenschutz (BfS), Germany
	Universiteit Gent (UGent), Belgium
Protician	Health Protection Agency (HPA), United Kingdom
IRSN	Institut de Radioprotection et de Sûreté Nucléaire(IRSN), France
()	Istituto Superiore di Sanità (ISS), Italy
Statens sträkern	Norwegian Radiation Protection Authority (NRPA), Norway
STUK	Radiation and Nuclear Safety Authority (STUK), Finland
WESTLAKES	Westlakes Scientific Consulting (WSC), United Kingdom*
UPB Internetien in ferenken	Universitat Autonoma de Barcelona (UAB), Spain
kihij	Institute of Nuclear Chemistry and Technology (INCT), Poland
HelmholtzZentrum münchen Gemar Rosens Center for Ereinenmerkal Health	Helmholtz Zentrum München (HMGU), Germany
0	Bundeswehr Institut für Radiobiologie in Verbind- ung mit der Universität Ulm (BIR), Germany
(#) Oxfoito	Gray Institute for Radiation Oncology and Biology, University of Oxford (UOXF), United Kingdom
EURADOS	European Radiation Dosimetry Group (EURADOS), European network registered in Germany

*) Former member. In August 2010 the Westlakes Research Institute ceased to exist and, consequently, left the consortium.

Funding: FP7 Security

Duration: 05.2010 - 04.2013

IRPA 13, Glasgow, May 2012

The biodosimetric tools

The dicentric assay

The automated micronucleus assay

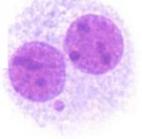
The gamma H2AX foci assay

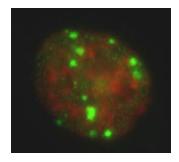
The skin speckle assay

The serum protein assay

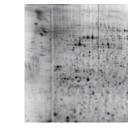
The mobile phone as a dosimeter

display glass – EPR semiconductors – OSL


Electronic components


Chip cards

Glass

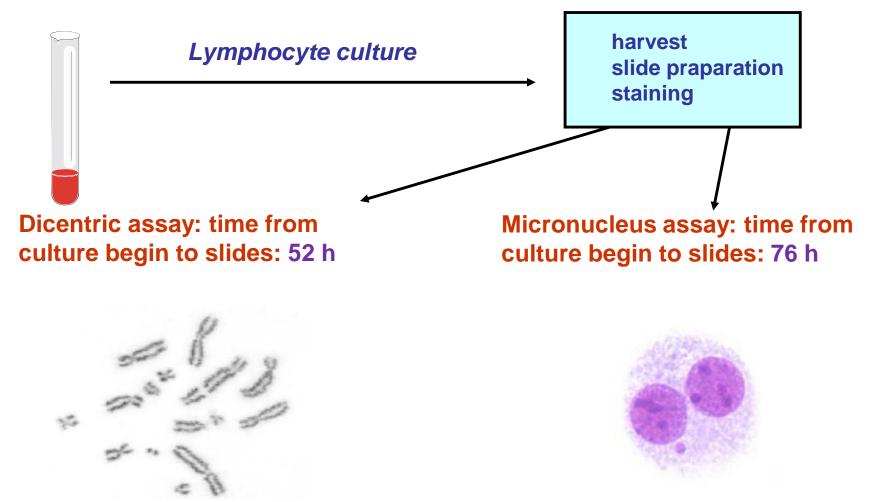

Plastics

The concept of MULTIBIODOSE The aims are reflected in the structure of each task

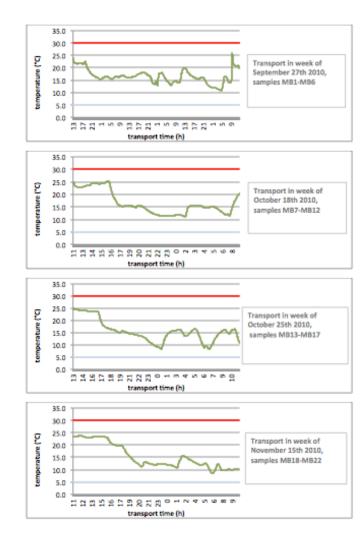
						Month nu		
		2	4	6	8	10 12	2 14	16 18 2
No	Task	Year 1		Year				
WP1	Dicentric assay							
1.1	To validate the conventional dicentric assay and provide training							
1.2	To validate the automatic dicentric scoring and provide training							
1.3	To validate telescoring of dicentrics and provide training							
1.4	To compare the dicentric assay with other biodosemeters							
1.5	To improve the performance of the Metasystems scoring tools							
1.6	To develop a future training programme for the dicentric assay							

A repeating pattern...

• To validate


- To improve/develop
- To compare with other assays
- To automate/ improve performance/ pursue commercialisation
- To develop a training programme

Some remarks about the speed of analysis of dicentrics and micronuclei in lymphocytes


Sending blood samples between laboratories

Transports of irradiated blood samples

- Transport by DHL
- Biological material code: UN 3373 BIOLOGICAL SUBSTANCE CATEGORY B
- 8 transports, problems with 1 transport => packages were lost !!
- TLD readings were generally 0 Gy with highest dose recorded 0.5 mGy, which can be neglected compared to the doses administered *in vitro*.
- Temperature loggers (see figures): temperatures during transport remained between 5-30 ° C

WP leader: BfS

WP 1 Dicentric chromosome assay

2. Automation

3.Telescoring

Month 1 to 12

Cell culture (standard) Conventional scoring Dose estimation Triage validation & Training Month 13 to 24

Month 25 to 30

Scoring criteria Cell culture (24h colcemide) Dic candidate scoring Dose effect curve

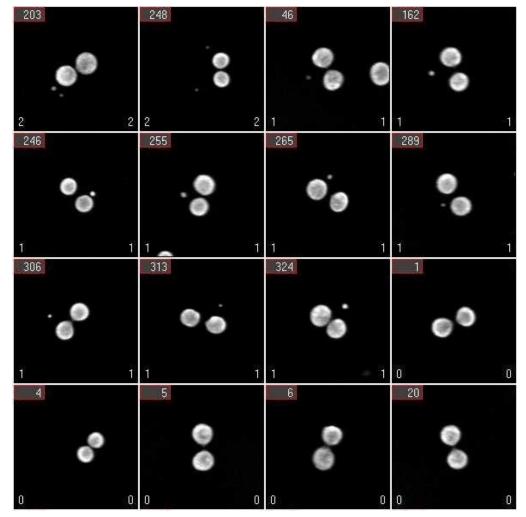
Scoring criteria Conventional scoring Quick scoring

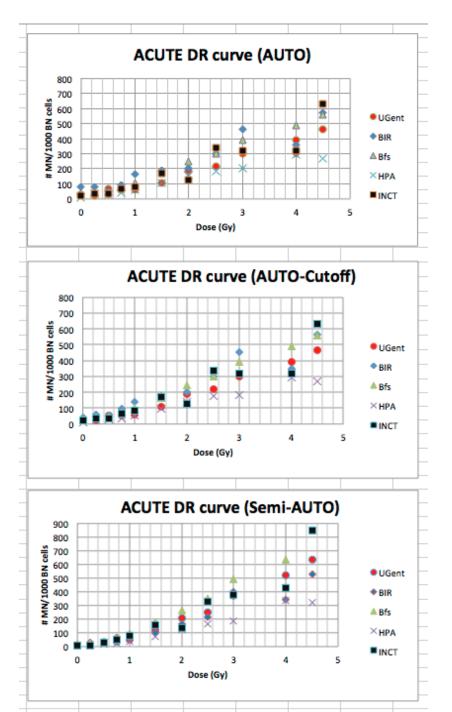
COOPERATIC

- The two classificators give comparable results
- The dicentrics follow poison distribution (dose effect curves)
- Semi-automated scoring of dicentric candidates gives acceptable results
- Semi-automated scoring detects inhomogenous exposures (u-test)
- Semi-automated scoring can be used in a large scale accident as pre-screening

The analysis of 1 sample (150 cells) can be performed in 25 minutes and needs only few human interaction

Metaphase finding:	5 min
Auto Capturing of 150 cells:	17 min
Automatic scoring :	1 min
Evaluation of dic candidates:	<u> </u>
Total:	25 min


WP leader: UGent


WP2 Automated micronucleus assay

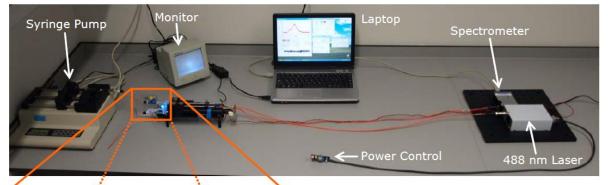
Scoring is performed at low optical resolution.

2000 cells can be scored within 8 minutes.

multibioda

multibiodose

WP 2: current status


General conclusion

The combination of the spontaneous MN and the MN dose response data obtained within this work package point to the superiority of the semiautomated scoring procedure for large scale biodosimetry in a multicenter setting to manage high scale radiological casualties.

WP 3 Gamma-H2AX assay WP leader: HPA

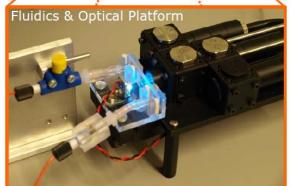
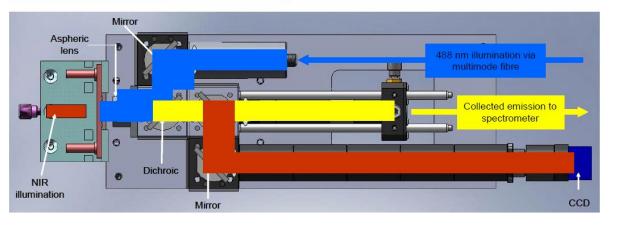



Image of two, 10 μ m, beads displayed on the monitor screen. The blue circle represents the focused laser spot size.

Image of the laser beam profile revealed using a cuvette containing a green fluorescent dye.

Portable fluidic system

Results highly variable Not suitable for on-site triage

WP 3: current status

Metafer/MetaCytebased foci analysis

Issues:

•Microscope objectives (x40 or x63)

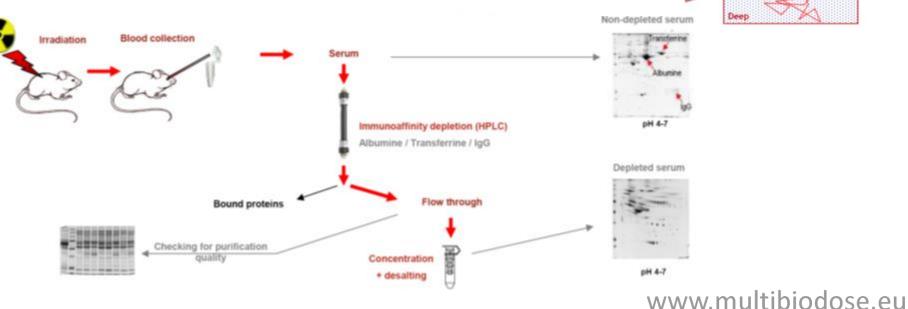
•Compatibility between Metafer versions (3.2.2 vs 3.5 vs 3.8.4)

General conclusion

General problem of the assay: weak signal stability but doses can be detected until 24h post radiatio.

With uniform Standard Operational Procedures (SOP) for blood handling and image analysis settings good reproducibility can be achieved.

Time of analysis from blood collection to results: ca 2-3h.


WP4: Skin Speckle Assay (SSA) multibiodose and Serum Protein Assay (SPA)

Recording by CCD

WP leader: IRSN

Main aims: To identify and validate a dose detection assay based on radiation-induced optical changes of skin (SSA) and changes in the level of selected serum proteins (SPA).

SPA

SSA

Illumination by

beam laser (non invasive)

Speckle spot : Surface Info.

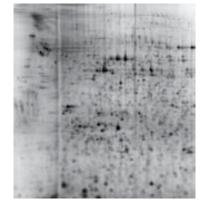
surface

surface

Deep

Speckle spot Depth Info

WP 4: current status

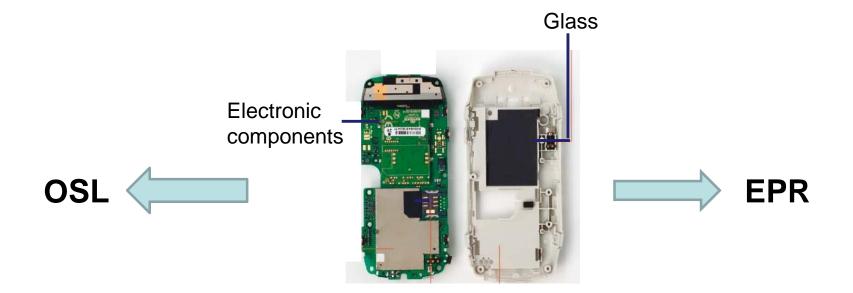

Skin Speckle Assay:

Not suitable for triage because radiation-induced skin changes become manifest after ca 140 days post radiatio.

Serum Protein assay

8 proteins were identified in a mouse model. Currently being tested in serum of patients treated by external beam radiotherapy.

Time between sampling and result: ca 4-6 h



WP leader: ISS

WP5: Electron Paramagnetic Resonance (EPR) and Opticaly Stimulated Luminescence (OSL) in portable electronic devices

Main aim: To identify components of portable electronic devices that can be used to read off the absorbed dose EPR or OSL.

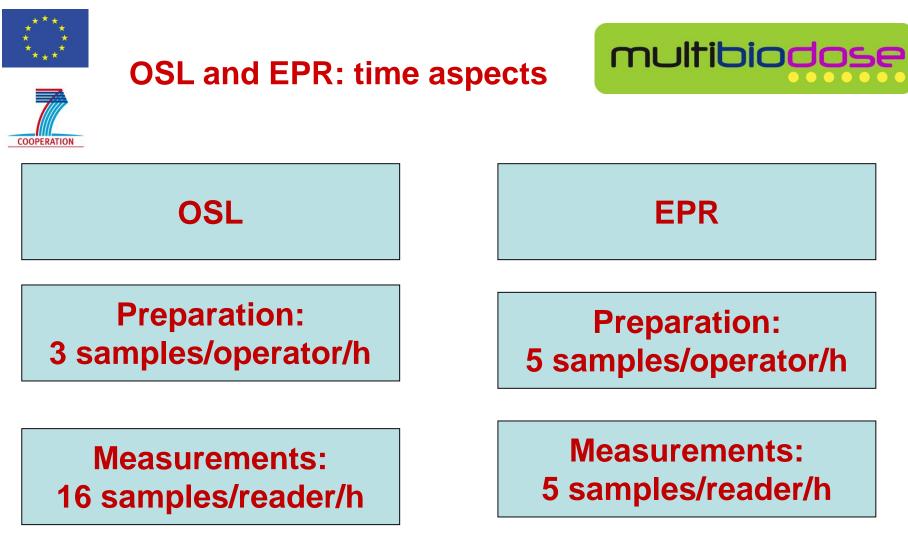
www.multibiodose.eu

multibiodo

WP 5: current status

Optically Stimulated Luminescence (OSL)

Advantage: high sensitivity (mGy)


Disadvantage: signal fading – 50% loss during 10 days

Electron Paramagnetic Resonance (EPR)

Advantage: high signal stability

Disadvantage: low sensitivity (1-2 Gy)

1 operator: ca. 200 samples a week 5 operators ca. 1000 samples a week

Bottle neck:sample preparation

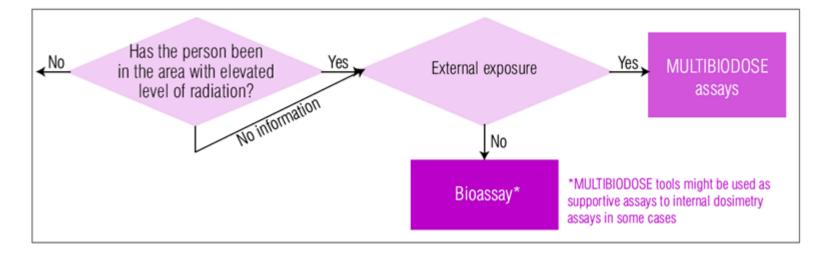
1 operator: ca. 250 samples a week

Bottle neck: instrument

WP leader: HPA

WP6: Statistical software package

COOPERATION		🕌 MBD - Dicentric assay				
🛎 MBD - MULTIBIODOSE		File				
File		Select number of samples: 5				
mul	tibiodose	Enter the data:				
		Case ID HPA001	Dose 2.05	Standard error 0.20		
Welcome to MBD - Multiparameter biodosimetry analysis softw			1.89	0.19		
New case? - Select assa Dicentrics Micronuclei Gamma-H2AX SSA SPA	Reminder: Purpose of	MULTIBIODOSE – [•] se categorisation a gories:		stimate ate		
EPR OSL Existing case? - Update of Case ID:		Yellow – 'Inter	xposure' – > 2 Gy mediate exposur exposure' – < 1 C	re' – 1–2 Gy		



WP7: Guidance for using MULTIBIODOSE tools in emergencies and dissemination of results

Main aims: (1) To provide information on the project and its results to the emergency preparedness organisations and radiation dosimetry community across Europe. (2) To develop operational guidance for using the tools developed by the MULTIBIODOSE project.

