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ABSTRACT

Significant advances have been made in recent years to improve calibration methodology and dose
calculation algorithm in the fields of TL dosimetry. This process was accelerated in the past decade particularly
in the Republic of Korea by the need to meet mandatory national accreditation requirements. The objective of
this study is to develop a new algorithm to replace the simplistic decision tree algorithms by the more
sophisticated neural networks in hopes of achieving a higher degree of accuracy and precision in personnel
dosimetry system. The original hypothesis of this work is that the spectral information of an X and γ-ray fields
may be obtained by the analysis of the response of a multi-element system. In this study, a feed forward neural
network using the error back-propagation method with Bayesian optimization was designed for the response
unfolding procedure. The response functions of the single element to photons were calculated by application of a
computational Monte-Carlo model for an energy range from 10keV to 2MeV with different spectral proportions.
The training of the artificial neural network was based on the computation of responses of a four-element system
for the back-propagation method. The validation of the proposed algorithm was investigated by unfolding the 10
computed responses for arbitrary mixed gamma fields and the spectra resulting from the unfolding procedure
agree well with the original spectra.

INTRODUCTION

The measurements of personal dose equivalent quantities become the determining factor force in
establishing procedures, practices, and working environments that limit radiation exposure. Further, accurate
measurements become the most important factor in litigation procedures. Currently, the personal dose equivalent
quantities, Hp(d), are determined by using multiple TLD chips with appropriate physical filters. The use of multi-
element dosimeters is necessarily required of a dose assessment algorithm that weights the reading of each
element for the evaluation of the dose equivalent. The optimization method using spectra found in working
places are generally applied for the determination of these weights. In the past decade, a family of empirical
algorithms has been developed which are based on parameterization of the response of the dosimeter to various
pure and mixed fields (8). The empirical algorithms are especially effective in mixed low energy photon and beta
fields and are capable of identifying the radiation field types and applying appropriate energy correction factors.
These algorithms have been in routine use for several years in large-scale personnel dosimetry programs. For
low doses, most common in routine personal dosimetry, empirical algorithms were recently introduced which are
based on parameterization of the response of the dosimeter to various pure and mixed fields (11).

In many practical situations, one is interested not only in the dose information but also in the energy
and type of radiation fields. For unknown mixed fields unfolding algorithms were developed that use numerical
deconvolution techniques to identify the field components and their relative contribution (9). The response of the
dosimeter is experimentally characterized in pure fields and the results are then used to create a response matrix
that is applied to identify the various field components and their relative intensity in an unknown mixed field.
Until now, therefore, the detection and evaluation method was carried out in a two-step procedure, first
performing the measurements and in a later step the interactive unfolding of the readings of the multi-element
system. Such unfolding techniques become ineffective at low dose levels where the radiation field may be
identified incorrectly or the unfolding algorithm may fail to converge due to increase in the random error of the
dosimeter response.

Although the dose assessment approach using conventional decision tree algorithm often provides
reasonable results, uncertainties may be magnified in the current TLD systems due to the random errors
associated with the characteristics of radiation fields. The objective of this study is to replace the simplistic
decision tree algorithms by the more sophisticated neural networks in hopes of achieving a higher degree of
accuracy and precision in the TLD system. The use of multi-element filter system can result in suitable
combinations providing information on the incident photon spectra if appropriate unfolding algorithms are
applied. The introduction of this intermediate step for obtaining spectral information on the incident radiation
has the advantage that different dose quantity can be determined, e.g. personal dose, effective dose and organ
doses. This can be performed by applications on the angular distribution of the radiation relative to the exposed
person. The original hypothesis of this work is that the spectral information of an X and gamma radiation fields
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may be obtained by the analysis of the response of a multi-element system. Theoretically, this could be possible
because a neural network uses all of the information from the elements and the network is designed to
mathematically minimize the global error in a system. Nevertheless, the ANN (Artificial Neural Networks) is
trained and optimized once in a process of about 5 hour on a PC of Pentium quality. Then, the trained ANN is
used for the unfolding of the measured signals, which requires less than one second of computation time.
Consequently, the unfolding step can be carried out immediately after the measurements of the TL light emission
by the reader system. In contrast, decision tree algorithms only use a single ratio from the badge and use the ratio
boundary values for changing a correction coefficient, which has been done by eye balling points on a graph
historically.

In this study, a feed forward neural network using the error back-propagation method with Bayesian
optimization was adapted for the response unfolding procedure. The response functions of the single element to
photons were calculated by application of a computational Monte-Carlo model for an energy range from 10keV
to 2MeV with different spectral proportions. The spectra collections comprise mono spectra; spectra from ANSI
N13.11 X-ray (M30, M60, M100, M150 and H150), high-energy photon (137Cs) and spectra from ANSI mixed
gamma sources (1). The training of the artificial neural network was based on the computation of responses of a
four-element system for the back-propagation method. The validation was performed by unfolding the 10
computed responses for arbitrary mixed gamma fields. It was found that the energy spectrum resulting from the
unfolding procedures agree well with the original spectrum used for the response computation.

MATERIALS AND METHODS

Determination of the element response

The design of a multi-element badge system presented here will allow beta and gamma discrimination
at the various energies presents in a mixed radiation field. For this preliminary study, we use single crystals of α-
Al2O3:C, 5mm in diameter and 1mm thick, supplied by Harshaw Bicron Co. in the form of TLD-500. As the
methods for growing the crystal (i.e. α-modification) is not known exactly, the material composition data for
response calculation is taken from the previous study of nominal Al2O3:C (12). However, as an examination of
impurity shows that two types of crystal have a similar chemical composition of impurities, whatever the method
used to grow the crystals, their carbon concentration is less than 0.1% by weight (6). Therefore, at concentration
lower than 0.1% weight carbon is not a dominating impurity in the crystals and it will not effects on the radiation
transport calculation. The principal feature of Al2O3:C detectors is their non-tissue equivalence, their effective
atomic number being Zeff = 10.2 (for tissue Zeff = 7.4). This leads to the detector sensitivity dependence on
photon radiation energy. The TL response to photons with energy 30keV is 2.9 times higher than the detector
response to irradiation with energy 1.33 MeV (60Co) as seen in Figure 1. The Al2O3:C TLD badge system,
therefore, requires the use of special filtration since Al2O3:C, while more sensitive than other TLD materials,
over-responds to ionizing radiations at low energy when compared with the response of tissue. That is why, to
make the dosimeter sensitivity independent of photon energy, it is necessary to use correcting filters described as
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Figure 1. Energy response of the calculated kerma in luminescent materials
as a function of photon energy.
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followings.
Because of the small filter thickness needed and the fact that it should consider the badge response to

high-energy radiations, radiation transport theory should be used to solve for the energy depositions of different
radiations in the TL material. Since the analytic calculation of the energy attenuation by the materials is almost
impossible except for very special cases, computer code is used to model the badge system and the radiation
sources, which can be made of single or multiple energies and radiation types. The procedure used was the
Monte Carlo simulation of particle transport in the filter system with the phantom within the framework of the
kerma approximation. This allows testing the effect of each of the design variables on the overall badge
responses. These variables include filter material for each area, filter geometry in the energy compensation area.
In this study, the preliminary selection of filter material was made using the concepts of HVL (Half Value Layer)
based on the mass attenuation coefficients µ/ρ (cm2/g). Using this HVL values, the response of the Al2O3:C TL
material to different gamma energy was found for different filter materials. After selecting the filter material
combination, the design was tested against the other variables using a three dimensional Monte Carlo particle
transport code called MCNP-4A (10). The phantom was assumed a homogeneous PMMA slab with a density of
1.19 g.cm-3 each with a front face area of 30cm × 30cm and a thickness of 15cm. The following irradiation
geometry was considered in the MCNP calculation. First, the dosimeter mounted on the phantom was
surrounded by a vacuum and secondly, it was irradiated by a unidirectional extended photon or electron beam,
the direction of which was parallel to the bottom surface of the slab and intersected the principal slab axis at a
planar angle α.

The principal dosimetric region of the designed badge has four areas, three filtered and one open
window. Due to the manner in which gamma attenuation coefficients change with energy, it is difficult to find
out a single material or combination of practical materials have an attenuation profile as a function of photon
energy that will provide the desired compensation of the energy over-response of Al2O3:C. It has been observed
that in flattening one portion of the energy response curve, other portions will show unacceptably higher or
lower energy responses. Use of three filtered regions will allow energy and radiation discrimination in the badge.
The MCNP code is used to determine a measure of the relative change in the simulated TLD readout of each
dosimeter area when other design variables are introduced. This is achieved by calibrating the MCNP code
estimates of the open window area readout again the experimental readout of the bare TL crystal for 137Cs
gamma energy (662keV). The calibrated MCNP results are then used in subsequent MCNP calculations that
model other areas of the badge. Each of the choices of filter materials in this study is a result of numerous
MCNP calculations and of several experimental tests used to confirm the simulation results.

An auxiliary design goal in primary dosimetric area is that the filters used should be able to eliminate
the presence of beta radiation in the case of mixed beta-gamma radiation exposure. Beta radiation will contribute
to the readout in this area if the filter used includes a hole, and the presence of beta radiation will complicate the
gamma readout giving rise to an error in the ratio A3/Hp(10). A beta filter, therefore, behind the metal filter is
utilized to eliminate any effects due to betas. The resultant design includes copper with a 0.06cm thickness,

Area Filter material Thickness of filter (mg/cm2) Total thickness (mg/cm2)

A1
Mylar

Polypropylene
Polyethylene

2.8
9

2.2
14

A2

Polycarbonate
Polyethylene

Teflon
Polypropylene

120
154
880

9

1163

A3

Polycarbonate
Polyethylene

Copper
Aluminum

Polypropylene

120
154
538
176

9

997

A4

Polycarbonate
Polyethylene

Lead
Polypropylene

120
77

795
9

1001

Table 1. Configuration of proposed multi-element filter system.
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followed by 0.65cm aluminum. The effect of this filter combination on the energy readout of Al2O3:C, expressed
as A3/Ka, is shown in Figure 2 compared with the open window area readout, expressed as A1/Ka. It also should
be noted that ratio A3/Hp(10) has ranging between 0.82 and 1.1 at the effective photon energy ranges from
20keV to 1MeV as shown in Figure 3. This is within the ±30% design limits required by the ISO standard (3, 4).
In case of the photon energy of 10keV, however, the ratio decreases to 0.5 %, falling outside the design limits.
Therefore, this filter combination allows effect reading of the dose equivalent Hp(10) received within ±20% just
for energies of 20 keV or higher. A filter configuration is summarized in Table 1 and the detailed design of the
badge system is discussed in another reference (5).

Analyzing the multi-element response by ANNEquation Section (Next)

The relation between the reading (registered counts) of a detection element Aj (out of N elements) and
the spectral photon fluence Φi can be expressed by following equation:

1

1,2,3 ,
m

j i ij
i

A R j N
=

= Φ =∑ K (1)

where, Rij represents the response per unit fluence by discrete values for the element j in the energy bin
EI and m represents the number of energy bins. The unfolding procedure aims at the solution of equation (1) for
the spectrum Φi. One approach to solve equation (1) is the application of ANN. The basic idea of this method –
applied for this purpose – is the ability of the algorithm to recognize the spectrum type from the pattern of the
count vector. In the framework of ANN, the networks are trained using supervised learning, with a training set of

inputs and targets in the form of { } { } { }1 1 2 2, , , , , ,n np t p t p tK . We assume that the targets are generated by

( )i i it g p ε= +  where ( )ig p  is an unknown function and iε  is independent Gaussian noise. The initial

objective of the training process will be minimize the sum of squared errors:
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Figure 2. Relative response of the sensitive area per unit exposure as a function
of photon energy.
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Figure 3. Relative energy response of primary dosimetric area A3 to personal
dose equivalent, Hp(10).
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where ia  represents the neural network response.

The goal of neural network training is to produce a network, which produce small errors on the
training set, but which will also respond properly to novel inputs. One of the problems that occur during neural
network training is called overfitting. The error on the training set is driven to a very small value, but when new
data is presented to the network the error is large. The network has memorized the training examples, but it has
not learned to generalize to new situations. When a network is able to perform as well on novel inputs as on
training set inputs, we say that the network generalized well. The idea is that the true underlying function is
assumed to have a degree of smoothness. When the weights in a network are kept small, the network response
will be smooth. With regularization, any modestly oversized network should be able to sufficiently represent the

true function. Typically, training aims to reduce the sum of squared errors DF E= . However, regularization

adds an additional term; the objective function becomes D WF E Eβ α= + , where WE  is the sum of squares

of the network weights, and α  and β  are objective function parameter. The relative size of the objective

function parameters dictates the emphasis for training. If α β= , then the training algorithm will drive the

errors smaller. If α β? , training will emphasize weight size reduction at the expense of network errors, thus

producing a smoother network response. The main problem with implementing regularization is setting the
correct values for the objective function parameter. It is desirable to determine the optimal regularization
parameters in an automated fashion. One approach to this process is the Bayesian framework of David Mackey
(7). David Mackay has done extensive work on the application of Bayes’ rule to neural network training and to
optimizing regularization. A detailed discussion of Bayesian regularization is beyond the scope of this paper. A
detailed discussion of the use of Bayesian regularization, in combination with Levenberg-Marquardt training,
can be found in other material (2).

The spectrum unfolding procedures described in this paper applies to multi-layer feed forward neural
networks that are used for nonlinear regression. With the basis of the Bayesian framework, an ANN for function
approximation is designed with following topology:

Figure 4. Schematic structure of 3-layer feed forward and back-propagation
network.
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•  Feed forward network: There are only connections from the neurons from one layer to the neurons of the
next adjacent layer; no connections across the layers are applied.

•  The input layer consists of six neurons due to the six-response factor from four elements of the system.
•  Two intermediate layers are used: The first intermediate layer consists of 70 neurons; the second one

consists of 440 neurons.
•  The output layer consists of forty neurons due to the subdivision of the gamma spectrum into 40-energy

bins.
•  The node transfer function is tan-sigmoid for the input neutrons and a linear function is used for the

neurons from the other layers.

Epoch
Sum of Squared Errors

(SSE)
Sum of Squared Weights

(SSW)
Gradient

Number of Effective
Parameter (γ)

0 2.173E+03 2.117E+02 3.620E+03 5.100E+02
50 3.650E-02 1.581E+00 3.870E-01 3.100E+02

100 2.259E-03 5.213E+00 1.190E-02 4.440E+02
150 4.378E-05 1.193E+01 1.370E-02 4.730E+02
200 5.489E-06 1.566E+01 3.990E-04 4.750E+02
250 4.711E-06 1.613E+01 3.190E-05 4.760E+02
300 4.320E-06 1.639E+01 5.770E-04 4.760E+02

Figure 5. Response functions of a six-parameter system for ANN input
vector.

Table 2. Trend of the network parameters by Bayesian optimization.
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For the training spectra, a subset (about 5) of an overall set of 25 photon spectra - from Monte Carlo
calculations - was used. A set of about 10 spectra for which it was possible to calculate the detector element
responses as realistically as possible served for validation. Therefore, the selected spectra considered in this
work contain at the same time gamma from 10keV to 2MeV photon energy, with different spectral proportions.
The spectra collection comprises mono spectra; spectra from ANSI X-ray, photon calibration source (137Cs) and
spectra from ANSI mixed gamma sources (1). In order to achieve a large number of photon spectra for the
training process, the primary spectra were used to create a larger set of spectra by a randomly variation of the
content for single energy bins of each spectrum. In Figure 5, the element response functions are illustrated in the
generalized response ratio derived from the quantity by division through the detector area. The example for
thephoton spectra is also illustrated in Figure 6. The numbers of the elements in the figure are related to the
detector sensitive area in Table 1.subdivision of the X-ray spectrum in 40 energy bins with respect to the
optimization of the calculated dose for
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RESULTS AND DISCUSSION
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Figure 5. Example of reference spectrum for ANN target vector.
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Figure 5. X-ray spectrum unfolded by ANN for ANSI M30 mixed with 20%
of 137Cs.
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For the training of the ANN, a modified off-line back-propagation algorithm was used. The training
procedure minimizes the error function, defined in this application by the sum of the square deviations of the
training spectra to the spectra computed with the ANN. During the training procedure the weight constants
between two neurons, which represent the strength and quality of the neuron connection (stimulating or
inhibiting the output) are determined. One feature of this algorithm is that it provides a measure of how many
network parameters (weights and biases) are being effectively used by the network. The back-propagation
algorithm was applied in a version with momentum term, weight decay term and flat spot elimination in order to
accelerate the training process. After the network training all weights of the connections are determined and the
unfolding process can be derived easily from the element responses. The major difference to common
optimization is that the evaluation and the optimization procedure are separated. The initial network is consisting
of 6-10-40 structures, and the number of hidden neurons in hidden layer is optimized according to the network
adaptation. In the process of adaptation, the network is scheduled to assess the SSE (sum of squared error), SSW
(sum of squared weight) and gradient at each 50 epochs. The performance goal of the network adaptation was
settled on 5.0E-6. In this study, 510 weights have to be determined, requiring on a Pentium-PC a total amount of
about 5 hours. The temporal trend in the network parameters according to the network adaptation is shown in
Table 2. As shown in the table, the effective number of network parameter is optimized as the epoch of the
network is increased and it was found that the optimal number of the parameter is 476.

For the reconstruction of the gamma spectrum, the course of dose conversion factors with respect to
the energy has to be taken into account. The corresponding calculation was performed with gamma spectra
subdivided into 40-energy bins. It turned out, that the subdivision of the gamma spectra into 40-energy bins leads
to dose estimates with sufficient accuracy in comparison to the spectra with full energy resolution (deviation
<20%). A least square procedure was applied to find the bounds of the energy intervals for the overall energy
range from 10keV to 2MeV. The typical results of spectrum unfolding of the six-parameter system that was
performed by the ANN are shown in Figure 7 and 8, together with an absolute comparison with the original
spectra. The comparison in both examples shows a rather good agreement between the unfolded spectrum and
the original one. Therefore, it can be stated from the evaluation of 10 validation spectra, that the proposed
method based on a multi-element detector in combination with the unfolding using ANN is a promising
approach for the application in personnel dosimetry.

After the computed responses were unfolded, the obtained spectra were used for personal dose
calculations. In this work, the unfolded spectra were folded with the dose conversion factor Hp(10)/Ka and the
dose value HP(10) was computed. The results of validation test are given in Table 3 and it can be found easily
that the determined dose values are reproduced within accuracy better than 80%. However, it also turned out that,
in a photon energy range from 20keV to 100keV, the dose values for computed mono-energetic photon spectra
might be overestimated by a factor of two. The reason is the similarity of the element response functions in this
energy range what results in a limited energy resolution of the incident photons. One limitation in comparison to
conventional methods is, that a change in the resolution of the photon spectrum, i.e. a change of energy bins in
number or bounds, requires also a change of the ANN topology and a new training procedure must be performed.
In conventional procedures, changes in the energy resolution can be carried out at the beginning of each
unfolding process.

CONCLUSION AND FURTHER SUTDY

In this feasibility study, we were try to propose the new dose assessment algorithm for multi-element
TLD system to replace the simplistic decision tree algorithms by the more sophisticated neural networks in
hopes of achieving a higher degree of accuracy and precision. We also introduced the Bayesian algorithm to
optimize the general MLBP (Multi-Layer Back Propagation) neural network. It was demonstrated that a multi-
element dosimeter system with an unfolding algorithm based on artificial neural network is suitable to obtain
spectral information on the incident photons It was also found that the Bayesian’s approach was helpful to
optimize the connective weights to solve the abnormal function overfitting. For the unfolding of the multi-
element response, merely these weights were applied without carrying out further optimizations. In consequence,
the unfolding step requires less than one second, i.e. several orders of magnitude less of computational time in
comparison to the optimization step. Therefore, the response unfolding can be carried out frequently and can be
implemented either as hardware or as software into the measuring instrument in this topology. Although the
theoretical feasibility of the method was only demonstrated in some examples, further important subjects for
future study will be to investigate the validation of the method by experiments, and compare the unfolding
techniques with common unfolding methods.
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HP(10) (Sv) HP(0.07) (Sv)Test
Category

HEP
(137Cs)

SSE
Delivered Calculated Relative error Delivered Calculated Relative error

M30 20% 7.034E-04 1.521E-15 1.277E-15 1.604E-01 3.703E-15 2.045E-15 4.479E-01
M60 70% 3.564E-05 1.923E-15 1.767E-15 8.096E-02 2.306E-15 2.641E-15 1.454E-01

M100 20% 1.375E-02 1.760E-15 1.559E-15 1.139E-01 1.728E-15 2.594E-15 5.012E-01
M150 70% 1.907E-04 1.965E-15 1.833E-15 6.714E-02 1.823E-15 2.330E-15 2.779E-01
H150 20% 2.020E-04 2.082E-15 2.043E-15 1.878E-02 1.911E-15 2.268E-15 1.870E-01
137Cs 100% 1.035E-05 6.673E-15 6.807E-15 2.020E-02 6.618E-15 6.960E-15 5.162E-02
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