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Abstract: The objectives of this article are to provide streamlined technique, including the Delphi approach, 

Bayesian update and two-dimensional Monte Carlo analysis(2D MCA), and to provide information through the 

investigation of factors in risk model which supports risk assessment for the radiological risk assessment in 

operation of such radiation facilities with vague information. The scope of this study is restricted to risk 

assessment. Focus was placed on the framing of probabilistic risk assessment(PRA) procedure applicable to a 

system for which information on risk contributing factors is vagueness. Incorporation of the Delphi panel 

method and the Bayesian update into PRA for dealing very uncertain factors was addressed in particular. The 

PRA methodology established through this study for facilities with vague information on risk contributing 

factors was applied for risk assessment for field radiography. Task analysis was performed for operations and 

scenarios based on the risk ranking and relative frequency were constructed for each task in field radiography. 

The risks for the worker and the public member were estimated by dividing into the normal and accident 

situations.  
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Introduction 

Risk or safety analysis in reverse deals in nature with uncertain situations, conventional and 

deterministic assessments therefore employ conservatism both in the risk model and in setting safety 

criteria in relation with the estimated risk. However, under such situations dealing very uncertain 

events for which experiences are lack or limited, 'conservatism' itself carries uncertainties and should 

be affected by subjective judgments. The probabilistic risk assessment(PRA) methodology was 

expected to give better insights of risk, particularly for modern complex engineered systems like a 

nuclear power plant(NPP).  

In accordance with advances in PRA methodologies and tools, and due to increase of radiation 

facilities of higher potential of radiological risk, the International Commission on Radiological 

Protection(ICRP) recommended consideration of PRA applications to relatively high risk practices 

involving radiation sources of high intensity[1]. The U.S. Nuclear Regulatory Commission (US NRC) 



conducted a study employing primitive PSA procedures with consideration of a probable rationality to 

identify regulatory options for a wide range use of nuclear byproduct materials[2]. Probabilistic 

assessment of radiological risk involves identification of exposure pathways or scenarios, evaluation 

of probabilities that such a pathway results, quantification of consequences by use of exposure models, 

and quantification of uncertainties in the estimates. The exposure model includes many variables like 

source term, exposure time and distance which are also uncertain. PRA applies the probability 

distributions for the variables in order to quantitatively characterize their variabilities and uncertainties.  

One of the prevailing methods in PRA is the Monte Carlo analysis (MCA), which is a procedure 

quantifying uncertainty of variability in a probabilistic framework using computer simulations. The 

MCA methodology, as well as its applications to risk analysis, has been reviewed and detailed in 

Cullen and Frey[3]. The two-dimensional Monte Carlo analysis(2D MCA), used to separate 

uncertainty and variability, are a natural extension of one-dimensional Monte Carlo analysis(1D 

MCA)[4, 5]. Experts can provide valuable information through his or her judgment/knowledge when 

the variable data are uncertain or restrictive[6]. Expert judgments have been widely applied to areas 

including nuclear engineering, aerospace, various types of forecasting(e.g. economic, technological, 

meteorological), military intelligence, and environmental risk from toxic chemicals[7]. In addition, 

applications of Bayesian inference are highly recommended for shaping and updating such uncertain 

variables[8]. 

Thus, it is of worth to establish a framework for an advanced procedure of risk analysis for the 

radiation facilities involving significant potential exposures, where information on risk contributing 

factors are vagueness, by encompassing the PRA approach and those new techniques in data 

production and improvement as well as in quantification of consequences and their uncertainties with 

MCA simulations. 

 

Materials and methods 

Risk Definition 

In radiological risk assessments in general, risk analysis involve evaluation of the frequency(in event 

per year) of events and their conditional consequences(in mSv) associated with possible states of a 

system. The state of a system is a description of its physical condition and its environment. The status 

of all the barriers or control is anything that affects the potential radiological impact. Risk, in its 

broadest definition, is then a compilation of possible system states and the associated probabilities and 

consequences[2].  

The radiation risk is the expected radiation exposure per unit time or mSv y-1. The normal task is the 

exposure the receptor is expected to receive over the year for activities and/or conditions that are 

expected during the year. It would be the accumulated exposure indicated by personal dosimetry 

devices(plus any internal exposure not measured by the dosimetry). The 'accident' risk is determined 

for non-normal sequences of events that are relatively unlikely. Because of the infrequency of the 

accident sequences, the accident risk would be an average or expected exposure only if averaged over 



a period of time that is long compared to the time between events or over a large number of devices or 

activities. Although a single receptor would not be expected to see the exposure indicated by the 

accident risk in a given year, a single receptor does has a probability of receiving the estimated dose 

for any given postulated accident sequence in a year. While not something that can be measured, the 

product of probability and consequences(dose) is the mathematically 'expected' dose for the year and 

is a useful measure of total accident risk.   

 

Structure of the PRA Model in This Study 

To the extent possible, PRA models are hierarchical in nature. This provides a way of structuring the 

vase quantities of information that go into a risk analysis. In order to analyse statistically the behaviour 

of a system from the known behaviour of components or sub-components, the logical structure of the 

interdependency of the components must be determined. An essential idea in the analysis of logical 

structures is the concept of success or failure of the system, sub-system and component. In particular, 

two reliability analysis techniques are commonly used for quantifying the likelihood of an accident; 

fault tree and event tree[9, 10]. Also, a variety of different types of data needed to support PRA 

quantification. This includes data on initiating event frequencies(i.e., the frequency of departures from 

normal operation), component failure rates, common cause failure rates(i.e., the frequency with which 

two or more components fail during a short period of time for the same reason), component 

maintenance frequencies and durations, component fragilities(i.e., component failure probabilities as a 

function of exogenous stresses such as fires, earthquakes, or high temperatures), and human error rates. 

For most of these data needs, several different types of information may be available, including not 

only component-specific information(e.g., the number of observed failures of each component), but 

also expert opinion and data on the failure frequencies of similar components at other system. The 

process for assessing radiological risk on radiation facility with vague information shows Figure 1.  

 

 

Figure 1. Brief flow chart showing the process of radiological risk assessment of radiation facility with 

vague information. 

The methodology developed through this study is applied for risk assessments for field 



radiography(NDT). The risks for the worker and the public member have been estimated by dividing 

as the normal and accident situations. Potential scenarios have been derived through visiting 

workplace and investigating accidents in Korea, and the importance of safety functions required for 

deriving final scenarios been then perceived. So have been collected the risk model variable and 

distribution parameters. For drawing the expert opinions, three-round Delphi survey has been tried out 

and the panels have been designed for NDT.  

 

Expert judgment for vague information and Bayesian Approaches 

The Delphi method originated in a series of studies that the RAND corporation conducted in the 1950s 

[11,12]. Researchers have applied the Delphi method to a wide variety of situations as a tool for expert 

problem solving. One of aims in this study is for an investigation of factors in the risk model which 

supports risk assessment of radiation facility with vague information.  

The flow chart of Bayesian update in this study is shown in Figure 2. The process of combining these 

distributions can be mathematically difficult. The problem is the assessment of the likelihood function  

L(x1, ⋯ , xn|θ). This function amounts to a probabilistic model for the information x1, ⋯ , xn and as 

such it must capture the interrelationships among θ and x1, ⋯ , xn. In particular, it must account for 

the precision and bias of the individual xi and it must also be able to model dependence among the xi. 

Therefore, the Markov Chain Monte Carlo(MCMC) simulation approach was used in calculating the 

posterior result with aid of the Crystalball's batch fit function, which provides optimized distributions 

of variables using the goodness-of-fit statistic. The WinBUGS package based on the MCMC method 

was used for deriving the posterior distribution. Gibbs sampler was used to generate the posterior 

distribution of the unknown parameters. 

The first Delphi survey is provided for constructing the major factors for scenarios, deciding their 

importance and designing inputs, for example, frequency, time and distance. The second survey is 

provided for revision and supplementation for the factors obtained through the first survey, and 

collection of the input variables. The third survey is designed for final revision and supplementation 

for the factors and final collection of the input variables by feedback of the first and second surveys. 

The final event trees for NDT have been constructed through the safety functions derived by Delphi 

surveys. All of the data obtained through Delphi surveys are needed to determine their optimized 

probabilistic distributions, and 'Batch Fit' function in CrystallBall program and ProUCL provided by 

NCRP (National Council on Radiation Protection and Measurements) are used for determining the 

optimized distributions.[13] The inputs in this risk model have been quantified for satisfying the 

scenarios, and the model variables such as dose reduction factor are applied by referring US NRC(U.S. 

Nuclear Regulatory Commission; US NRC) information. Posterior distributions for the model 

parameter and distribution parameter have been obtained by Bayesian inference using Markov Chain 

Monte Carlo method and WinBUGS package is used as tool obtaining posterior distributions[14].  

 



 

Figure 2. Flow chart for the Bayesian update in this study 

 

Two-Dimensional Monte Carlo Technique  

A two-Dimensional(or second-order) Monte Carlo analysis(2D MCA) was proposed to estimates the 

uncertainty in the risk estimates stemming from parameter uncertainty[15]. A 2D MCA is a Monte 

Carlo simulation where the distributions reflecting variability and uncertainty are sampled separately 

in the Monte Carlo simulation framework, so that variability and uncertainty in the output may be 

estimated separately[16]. The 2D MCA was performed using the PDFs of V-type(variability) and U-

type(uncertainty). The flow chart for the 2D MCA process and illustration of 2D Monte Carlo 

simulation are presented in Figures 3. A total of 250 cumulative distribution functions(CDFs) were 

generated using the software packages CrystalBall. For example, the exposure frequency is modeled 

as normally distributed random variable with various mean and standard deviation combinations 

selected from triangular or other distributions. In this study, 250 different mean and standard deviation 

combinations are generated for the exposure frequency. For each mean and standard deviations 

combination 10,000 Monte Carlo simulations are conducted to generate one CDF. The number of runs 

was 10,000 for the inner loop and 250 for the outer loop. The resulting risks are expressed in terms of 

annual radiation dose. 

 

 



 

Figure 3. Schematic flowchart for 2D MCA. 

 

Results and Discussion 

Selection of Model Variable  

The results of risk estimates based on 1D MCA using the Delphi panel responses for tasks in field 

radiography(using task) were shown in Figure 4. Generally, conservative risk evaluations were 

obtained with model variables from experts in the regulatory organization(KINS) compared with those 

with model variables from experts in NDT companies. Since the updated model variables have 

significant effects on final risk results, three risk results have been compared and analyzed each other. 

Through these comparison and analysis, the model variables for final risk assessment have been then 

determined. The overall risks by the Bayesian updating of the model variables are compared with both 

those without updating (3rd Delphi survey) and those resulted from the estimation employing data 

within the 95% confidence interval at the third-round Delphi survey, as depicted in Figure 5. 

It is noted in Figure 5 that the CDFs without updating show unrealistically low and high values of dose 

in the lower and upper tails. On the other hand, the risks applying the Bayesian updating well agree 

with the risk reflecting 95% confidence interval. The later, however, suffers arbitrary rejection of 

some collected data. Consequently, the radiological risk assessment in order to uncertainty analysis 

was performed using the Bayesian updated input variable for the system.  

 



 

(a) Normal task(using)                 (b) Accident(using) 

Figure 4. Distribution of risk from 1D MCA using Delphi panel response for field radiography due to 

normal task(a) and accident(b) for worker. 

 

Since the updated inputs have significant effects on final risk results, three risk results have been 

compared and analyzed each other. The overall risks by the Bayesian updating of the inputs are 

compared with both those without updating(3rd round Delphi survey) and those resulted from the 

estimation employing data within the 95% confidence interval at the third-round Delphi survey. 

Through these comparison and analysis, the inputs for final risk assessment have been then determined. 

For final risk assessment, the model variable and distribution parameter have been divided as U and 

V-type, and the uncertainties for the risks are quantitatively analyzed by applying 2D MCA. 

 

 

(a) Normal task(using)               (b) Accident(using) 

Figure 5. Risks distributions from different characterizing methods of input variable for field 

radiography due to normal task(a) and accident(b) for worker. 

 

2D MCA Result of Field Radiography 

Risk assessments of the field radiography for the worker as example divide into normal operation and 

accident were performed based on the probabilistic risk assessment methodology. Figures 6 and 7 

shows that 90% confidence interval and the statistic summary for variability of risk for using task from 

2D MCA and 1D MCA results in field radiography were presented for risk of the worker due to 



normal task and accident. In case of normal task, expected annual dose maximally for the worker was 

estimated as 12.7mSvy-1(97.5th percentile of 95% value) which is presented lower than annual dose 

limit(20mSv). In the case of accident for the worker, the confidence intervals of risk for median are 

estimated as [0.174, 25.4]mSvy-1. Table 1 given the results of the range of expected annual dose for 

using task. 

 

 

(a) Normal task                         (b)Accident 

Figure 6. 90% confidence interval of risk for using task from 2D MCA and 1D MCA results in field 

radiography due to normal task(a) and accident(b). 

 

 

(a) Normal task                           (b) Accident 

Figure 7. Statistical summary for variability of radiological risk from 2D MCA due to normal task(a) 

and accident(b) in using task. The presented are 90% confidence intervals for each percentile. 

 

2D MCA 

percentiles 

Range of expected annual dose[mSv y-1] 
 1D MCA 

Receptor 5% Mean Median 95% 

Risk of normal task 
     

2.5%ile Worker 3.00E-01 2.78E+00 1.97E+00 8.02E+00 2.29E-01 
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97.5%ile95%ile90%ile50 %ile10%ile5%ile2.5%ile



Public 4.36E-06 4.53E-05 3.24E-05 1.29E-04 3.30E-06 

50%ile 
Worker 3.78E-01 3.42E+00 2.42E+00 9.85E+00 2.38E+00 

Public 5.94E-06 5.92E-05 4.32E-05 1.66E-04 4.34E-05 

97.5%ile 
Worker 4.94E-01 4.31E+00 3.04E+00 1.27E+01 1.27E+01 

Public 8.13E-06 7.55E-05 5.43E-05 2.12E-04 2.13E-04 

Risk of accident 
     

2.5%ile 
Worker 1.23E-01 5.42E+00 2.70E+00 1.95E+01 7.26E-02 

Public 1.92E-04 1.76E-02 6.72E-03 6.98E-02 1.12E-04 

50%ile 
Worker 1.74E-01 7.01E+00 3.50E+00 2.54E+01 3.50E+00 

Public 2.98E-04 2.34E-02 9.27E-03 9.12E-02 9.22E-03 

97.5%ile 
Worker 2.55E-01 9.16E+00 4.65E+00 3.33E+01 3.59E+01 

Public 4.55E-04 3.09E-02 1.25E-02 1.19E-01 1.35E-01 

Table 1. Summary of 2D MCA and 1D MCA for radiological risk of using task in field radiography. 

 

Conclusions 

 

A streamlined procedure including Delphi method, Bayesian update and two-dimensional Monte Carlo 

analysis was established for the probabilistic radiological risk assessment of radiation facilities where 

information on risk contribution factors is often vague. The Delphi method was confirmed as a useful 

research tool for elicitation of expert opinions and the model variables for use in PRA were obtained 

through the three-round Delphi survey. The approach characterizing model variable and distribution 

parameters using the Bayesian inference provided improved risk estimates while avoiding intentional 

rejection of certain data. Bayesian updating of distributions of uncertain model variables also showed 

a plausible capacity in shaping those variables used in the successive risk calculations. The 2D MCA 

provided a quantitative measure of the confidence in the fraction of the population with a risk 

exceeding a particular level, which is sometimes referred to as a vertical or horizontal confidence 

interval(or credible interval). By separately characterizing variability and uncertainty, it will facilitate 

to understand and communicate of the PRA results. It is expected that the procedures established in 

this study, with certain refinements, will open the way leading to quantification of risks and their 

uncertainties in similar systems with vague risk information, particularly in radiation facilities of other 

type. 
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