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When sample activity is measured several times for various reasons, then with each measurement can be associated an 

individual decision threshold and limit of detection. Each measurement can be analyzed through its own decision 

threshold. The whole measurements can sometimes present contradictory results, certain measurements being lower than 

the decision threshold and other higher. The problem then arises to build a decision threshold and a detection limit 

taking into account all the individual results and to decide if the radioactivity is finally detected or not. It is interesting to 

note that the global decision threshold, taking account all individual results, could enable the analyst to decide that the 

radioactivity is present whereas each individual results is negative in terms of individual decision threshold. We are able 

to show how these thresholds and these coherent limits cumulated can be determined in way according to the 

experimental conditions. In a general way a rigorous method of cumulating makes it possible to systematically decrease 

the decision threshold and limit of detection in terms of activity. This approach has interesting applications in gamma 

spectrometry with multi-emitters, radioactive surveys or periodical environmental measurements. On the basis of 

measurements realized by the IRSN within the framework of the national monitoring of the environment, we will see the 

potential impact of these methods on the final assessments. 
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1 INTRODUCTION 

 

The experimental situations where it is possible to cumulate multiple measurements are varied but can be distributed 

according to three possible general outlines: 

- Case n°1 (repeatability): Iteration of measurements on the same sample under identical measurements 

conditions, except possibly the duration of counting. 

- Case °2 (simple reproducibility): reproduction of measurements on the same sample under conditions of 

different measurements: efficiencies, systems of measurement … 

- Case n°3 (widened reproducibility): multiple measurements of different samples but obtained starting from 

a single measurand to be defined. 

In all cases, the objective is to consider situations where the accumulation of the obtained values has a sense, wether 

this accumulation corresponds to the sum of individual measurements, or their algebraic or weighted average, or any 

other statistics. Let us consider for example the current situation of a measurement by gamma spectrometry of a 

sample likely to contain a multi-emitter gamma radionuclide. Taking into account all the n  regions of interest (ROI) 

of this radionuclide on the experimental spectrum falls under the case n°2. Indeed, each ROI can be considered as a 

specific nuclear counter of a specific photons energy emitted by this radionuclide. Each one of these “counters” can 

be used separately to estimate the activity of this radionuclide. But the energy photons, the intensities of emission 

and the efficiencies are different from one ROI to another, thus answering the criterion of reproducibility. Thus is 

obtained n estimations An of the same true activity Â under reproducibility conditions (case n° 2). These estimations 

have vocation to be of the same order of magnitude, but not their uncertainties nor their decisions thresholds.  

 

One can show that in such a situation the best estimation of the true value consists in taking the average of the n 

measured activities weighted by precision1. This corresponds to taking into account all the available information in 

                                                                                       
1  Precision can be defined like the inverse of the square of uncertainty. Thus to a small uncertainty corresponds a high 

degree of precision. It is also the quantity of information in the sense of Fischer. 
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the spectrum, step called here in a generic way “accumulation”, and not only the best individual estimation, usually 

the one having the smallest uncertainty, equivalent to the “fuller” peak. One can then show that the estimation by 

accumulation is always better than the best individual estimations. This result is intuitively understood as each 

measurement accumulated brings additional information, which can only improve final information. It is obviously 

in the best interest of the expert to use all the information available whenever possible.  

 

In gamma spectrometry the use of the weighted average with all peaks of the same radionuclide does not pose any 

problem if they “are sufficiently filled” and interference-free. The calculation of the weighted average does not 

create any problem when all estimations are higher than their decision thresholds, and thus considered to be 

significant of a proven presence of the radionuclide. Problems appear when some of the n  measurements are lower 

than their respective decision thresholds. When this occurs, one decides that the effect is not detected and declare “< 

LD”. The true value, in case of a radioactive sample, is then at least lower than the detection limit associated to the 

considered ROI.  

 

Thus when m measurements out of n are declared as “< LD”, several questions appear: 

 Question 1: is it necessary to integrate these m nonsignificant measurements into the accumulation?  

 Question 2: if “yes”, how can one take into account information like “<LD”? 

 Question 3: if “not”, can neglecting such result lead to the risk of biasing the final result? 

 Question 4: if “not” what can be done if all measurements are lower than their respective decision threshold? 

 Question 5: what are the decision threshold and the detection limit corresponding to the final weighted average? 

 Question 6: can one, in a way or another, use the n individual decision thresholds to determine the decision 

threshold on the result obtained by accumulation? 

 

Various methods exist in the literature to try to exploit nonsignificant measurements [1] [2]. These methods can be 

rather heavy to implement and vary according to the proportion m/n. We will not approach these methods here but 

they are only stopgap methods. The aim of this article is to answer these various questions, and to show the interest 

of cumulating multiple measurements correctly whenever possible. We will see that this interest increases withthe 

number of available measurements. In some experimental situations, like the periodic or continuous follow-up of the 

radioactivity monitoring in the environment, where measurements are often numerous and close to the decision 

thresholds, the impact of these methods on the end result can often be spectacular. 

One of the most important parts of the answer is that one does not need to know, in the aim of analysing a cumulated 

result, if individual measurements are lower or not than their own decision threshold. In fact, taking care of only 

these individual information to make a final decision on cumulated results is not only useless but raises 

insurmountable difficulties.  

2 DETERMINATION OF THE DECISION THRESHOLD CUMULATED IN THE CASE OF COUNTING REPETITION  

2.1 Description of the repeatability process and analyze of individual results 

On the basis of a simple situation, corresponding to the case n°1, it is possible to lay down without difficulties the 

principal rules which one will find in all possible cases. Moreover this simple situation of accumulation is already 

implicitly at work when one takes a single measurement of activity starting from a single background counting and a 

single sample raw counting. A ten seconds single measurement is nothing else than ten one second measurements 

accumulation. 

 

One considers here a series of ten measurements of the same sample under repeatability conditions: same 

measurement device, same distance source-detector, same background condition, same counting duration. For each 

individual measurement “i” one can distinguish several phases in the operation from measurement to final analysis: 

 

Phase 1: construction of the decision-making aid tool: 

- Background counting  for a duration 0T  identical to the duration of sample counting noted ST : the result is 

noted iBkG  

- Determination of the decision threshold in terms of net counting value  following the formula 

1 2( 1)Net i iLc k BkG   (1)  
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- Determination of the detection limit in terms of net counting value following the formula 
2

1 2Net i Net iLD k Lc   (2), corresponding to the case of alpha and beta identical risks. 

In Eq. (1), 1 extra count appears naturally in a Bayesian determination of decision threshold, preventing us from 

getting zero in case of a zero background [3]. 

 

Phase 2: sample measurement: 

- Gross  count sample: the result  is noted iGross  

- Determination of net counting value  i i iNet Gross BkG   

 

Phase 3: analysis of the result: 

- Decision threshold Test : ?i Net iNet Lc  

- If “yes” the effect is considered detected. Estimation of true average net counting value and associated 

uncertainty ˆ 2Net i i iNet k Net BkG      (typically k=1, 2, or 3) 

- If “not” the effect is regarded as not detected. Final expression of the result:  

" " 0Net NetLD LD     

Numerical example: 

 

 Phase 1 Phase 2 Phase3 

 iBkG  Net iLc  1. Net iLD  
iGross  iNet  Net> Lc? Result uncertainty (k=2) 

Relative 

uncertainty 

meas. 1 100 28 59 143 43 yes 43 31 73% 

meas. 2 96 27 58 148 52 yes 52 31 60% 

meas. 3 113 29 63 130 17 no < LD / / 

meas. 4 117 30 64 158 41 yes 41 33 81% 

meas. 5 142 33 70 134 -8 no < LD / / 

meas. 6 110 29 62 154 44 yes 44 32 74% 

meas. 7 126 31 66 142 16 no < LD / / 

meas. 8 138 33 69 138 0 no < LD / / 

meas. 9 103 28 60 152 49 yes 49 32 65% 

meas. 10 104 28 60 123 19 no < LD / / 

Table 1: individual analyzes of 10 counting values of the same sample (alpha risk error at 2,5%) 

2.2 Accumulation of the results by summation of individual countings 

The objective of the accumulation is to synthesize all the information in only one line. Again appears the problem to 

integrate into this accumulation information of the type “<LD”. However in this precise case the starting point of this 

synthesis is commonplace. Indeed, and for purely physical reasons, the two series of raw counts and background 

noise can be perceived like intermediate results partial of two single countings: a single background counting value 

during 10xTs and a raw count single of the same duration. This simple report will make it possible to carry out the 

accumulation without being concerned with knowing  wether each result is higher or lower than its threshold of 

decision. 

 

Thus a fundamental rule appears in this type of problem:  

 Rule n° 1: information of the phase of analysis of individual measurements (phase 3) should not be taken 

into account in the development of the accumulation and it is necessary to preserve, in the objective to carry 

out an accumulation, all information of phases 1 and 2 of all individual measurements, whatever they are, 

including when the net amounts are negative: 

 

 
 Phase 1 Phase 2 

 iBkG  Net iLc  Net iLD  
iGross  iNet  
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meas. 1 100 28 59 143 43 

. 

. 

 

. . . . . 

meas. 10 104 28 60 123 19 

Table 2: information to be preserved before  acccumulation 

 

The operation of accumulation consists in this particular case to consider a single measurement with background 

value 
1

n

i

i

BkG BkG



  (3) and a gross measurement value
1

n

i

i

Gross Gross



 . Insofar as the sum preserves the 

Poisson character of the counting values, these two cumulated counting values make it possible to apply the same 

previous procedure:  

 

Phase 1: the construction of the decision-making aid tool of on the cumulated result: 

- Background counting value equal to BkG . 

- Determination of the decision threshold “accumulation ”:  1 2NetLc k BkG    (4) 

- Determination of the  detection  limit “accumulation ” 
2

1 2Net NetLD k Lc     (5),  

In equation (4), 1 extra count was not added to the background variance for simplicity. 

 

Phase 2: cumulated sample measurement: 

- Gross sample count: the result obtained is noted Gross  

- Determination of net counting value  Net Gross BkG     

 

Phase 3: analysis of the cumulated result: 

- Decision threshold test ?NetNet Lc   

- If “yes” the effect is considered detected. Estimation of true average counting and associated 

uncertainty 2Net Net k Net BkG
       

If “not” the effect is regarded as not detected. Final expression of the result: " " 0 NetLD LD   
 

It should be noted that the measurand of interest Net  is also equal to
1

n

i

i

Net Net



 . 

Applied to the previous example the following cumulated result is obtained: 

 

 Phase 1 Phase 2 Phase3 

 BkG  NetLc  NetLD  Gross  Net Net> Lc? Result Uncertainty (k=2) 
Relative 

uncertainty 

Accumulation 

by summation 
1149 94 192 1422 273 yes 273 101 37% 

Table 3: accumulation by summation 

 

The obvious result showing and justifying the general interest of the accumulation is here the final relative 

uncertainty equal to 37%, whereas for the whole of the individual results, the average of the relative uncertainties is 

much higher (see Table 1 or 2 above). One second less obvious indication but of  interest to be notified  is the fact 

that  the end result in terms of net counting value (273) is now largely higher not only than the decision threshold but 

also than the  detection  limit (192). That confirms that the presence of radioactivity is confirmed with a very great 

probability2, whereas five individual measurements on the ten did not confirm this presence. Concluding from this 

last remark that the probability for the sample to be nonradioactive could have been be equal to 50 % would have 

been strong pessimist (or extremely optimist if it had been preferred that it is not so). 

                                                                                       
2 Rigorous calculation shows that with such values the residual probability that the' sample is nonradioactive is equal 

to
83.10

. 
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2.3 Determination of the decision threshold on the accumulation starting from the individual thresholds of 

decision 

The accumulation method used here did not require knowing preliminary n individual decision thresholds and 

detection limits, which seems to contradict the rule n°1 which recommends keeping them. In fact we will show now 

that these values can be employed to directly find the decision threshold suitable for the cumulated value. 

 

If one considers relations 1, 2 and 4, one can write: 

 

1

1 2
1 2

1 22
1 1 11

2

1 1

(1) 2
2

(2) 2
2

(4) 2 2

n
Net

Net in n n
i Net i

i Net Net i

i i iNet i

i

Net i i

Lc k BkG
Lc k BkG

Lc
BkG BkG Lc k Lc

kLc
BkG

Lc k BkG k









 

  

 



  

  

 

 
 
 

     
 

  


    

 

One thus obtains a simple relation between the decision threshold on the cumulated net value and the partial decision 

thresholds. It is important to note that this relation is similar to the relation between uncertainty on the cumulated 

result and the partial results. Indeed with u  uncertainty associated to Net  and iu  uncertainties associated to the 

partial results iNet , it is well known that the relation 
1

n

i

i

Net Net



  allows expressing associated uncertainty 

according to the relation
2

1

n

i

i

u u



  . This analogy is not worth demonstration, but becomes more relevant if one 

remembers that basically 1 0HLc k   [3], with 0H  the standard deviation of the distribution of the 

measurements under  0H  hypothesis (nonradioactive sample). Being homogeneous with a standard deviation, the 

decision thresholds “are propagated” in the model of the cumulated result following the same algebra as 

uncertainties3. This report makes it possible to state the following rule: 

 

 Rule n° 2: the decision thresholds follow an algebra of standard deviation and are composed in operations of 

accumulation according to the same formula as uncertainties. 

 

This powerful rule will enable us to carry out an accumulation of ten measurements lots by carrying out a “natural” 

sum but by considering the averages of the background and gross counting values. 

 

Concerning the limit of detection, the rigorous resolution is more delicate (except in this example, cf. eq. 5) as the 

limit is not perfectly homogeneous with a standard deviation because of the term 
2

1k   in the expression (5). 

However, by keeping the approximate relation 2LD Lc (beta and alpha risk errors are assumed to be the same), 

one can estimate the cumulated detection limit while applying: 

 

- Either the rule n°2 on the individual detection limits. Following this rule one obtains in our example 

2

1

200
n

Net Net i

i

LD LD



   

- Or directly the expression 
2

1-β ΣNetLD k +2Lc  giving here ΣNetLD 192   

 

These approximations are admissible as the thresholds and limits calculated starting from the experimental values 

are, like all experimental statistics, sullied with uncertainty. A calculation show here that the uncertainty-type (k=1) 

                                                                                       
3 In the approach of the standard ISO 11929 one finds this property, insofar as the decision threshold is 

written 1 (0)Lc k u . Although conceptually debatable, (0)u  is also a standard deviation. 
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on the exact value of the detection limit is equal to 5LDu

  [3], the expanded uncertainty (k=2) 10LDU


 , which 

makes it possible to accept these approximations. 

2.4 Accumulation of the results by average of the individual results 

It is quite intuitive to synthesize these ten measurements by carrying out the average of the counting values over one 

duration Ts . One can note that this average has a sense insofar as countings are carried out under conditions of 

repeatability for identical durations. Following rule n° 1, i.e. without being concerned with knowing if the individual 

results are higher or not than the individual decision thresholds, one can write the final result cumulated on the 

statistics of interest:  

1 27,3

n

i

i
n

Net

Net
n

 


. 

 

To determine if this mean value is significant or not, we have to calculate a decision threshold Lc coherent with these 

statistics. The uncertainty 
nNet

u  associated to nNet  is equal to :

 

2

1

1
n

iNet
i

n
u u

n 

  . 

Rule n° 2 then tells us that the “cumulated” decision threshold is equal to:

 

2

1

1
n

Net iNet
i

n
Lc Lc

n 

   (6) 

That is to say here
10

9,4
Net

Lc  . The accumulation by the averaging operation makes it possible to obtain the 

following information: 

 

 Phase 1 Phase 2 Phase3 

 nBkG  
nNet

Lc  
nNet

LD  
nGross  nNet  Net> Lc? Result 

Expanded 

uncertainty (k=2) 

Relative 

uncertainty 

Average 114,9 9,4 20.0 142.2 27.3 yes 27.3 10 37% 

Table 4: accumulation by average 

 

In this particular case of repeatability, the individual decision thresholds are all of the same order of magnitude (see 

table 1). There is then the approximate relation 
2

2

1

. NetNet i

i

n
Lc n Lc



  and the relation (6) can be approximated 

according to the relation: 
21

. .
n

Net
net

Net

Lc
Lc n Lc

n n
   (7). 

This shows that the decision threshold on the mean value decrease like the inverse of the square root of the number 

of individual measurements and show the interest of such  an accumulation. It will be noted that uncertainty 

associated with the average decreases in the same proportions. An error which one should avoid is to determine here 

a decision threshold according to the same algebra, leading to
n

NetNet
Lc Lc . 

 

If one had eliminated from the final assessment the five values corresponding to the declaration” < LD”, one would 

have obtained a net mean value 5' 46Net   instead of 10 27Net  . The values presented here come from a data-

processing simulation and the true net average is equal to µNet=23. This simple example shows that not taking into 

account measurements of the type “< LD” in the accumulation can give biased positive final values. 

 

For this reason, it is important not to erase the experimental values of counting operation in the tables of individual 

results, if these results are likely to be one day cumulated in a way or of another (rule n°1). This is particularly true in 

environmental or discharge measurements, usually carried out over long periods. It then happens too often that the 

recorded results exclude the rough experimental data to store only information of the type “<LD”, information, not 

usable in the accumulation. 



 7 

 

To illustrate a completely no-intuitive result, it is possible that all the partial results (table 5) are found nonsignificant 

(Net<Lc), whereas the accumulation (table 6) highlights a proven radioactivity (with a risk error still lower than the 

risk  ) 

 

 Phase 1 Phase 2 Phase3 

 iBkG  Net iLc  Net iLD  
iGross  iNet  Net> Lc? Result 

Expanded 

uncertainty (k=2) 

Relative 

uncertainty 

meas. 1 119 30 64 122 3 no < LD / / 

meas. 2 119 30 64 136 17 no < LD / / 

meas. 3 126 31 66 137 11 no < LD / / 

meas. 4 144 33 70 139 -5 no < LD / / 

meas. 5 131 32 67 151 20 no < LD / / 

meas. 6 119 30 64 145 26 no < LD / / 

meas. 7 127 31 66 130 3 no < LD / / 

meas. 8 113 29 63 125 12 no < LD / / 

meas. 9 127 31 66 145 18 no < LD / / 

meas. 10 111 29 62 140 29 no < LD / / 

Table 5: example with 10 negative individual results (<Lc) 

 

. Phase 1 Phase 2 Phase3 

 nBkG  
nNet

Lc  
nNet

LD  
nGross  nNet  Net> Lc? Result 

Expanded 

uncertainty (k=2) 

Relative 

uncertainty 

Accumulation by 

average 
123.6 9.7 20.7 137 13.4 yes 13.4 10 76% 

Table 6: accumulation by average. Positive end result (> Lc) 

 

These results were obtained by simulation with a true value 18Net  . It shows that 10 negative results are not a final 

proof of an absence of radioactivity. The “average” of ten “non” isn’t “none”. 

 

Note 1: A common mistake would be to declare that ten nonsignificant measurements can lead only to one 

nonsignificant accumulation. If in addition this detection limit is wrongly calculated like the average of the 

individual limits, the results of table 6 would lead to a final assessment Net" <65"  instead of ˆ 13 10Net   . 

Note 2: an indication showing simply that the results of table 5 give an hint that there is “something” is that when 

one repeats measurements of a nonradioactive sample, then the net values are on average negative 50% of time. 

However, here nine results out of ten are positive, which allows us to think that the probability that the sample could 

be free of radioactivity is weak.  

 

The detection limit associated to 
nNet

Lc  is calculated according to a similar formula:  

2

1

1
n

Net iNet
i

n
LD LD

n 

   

It’s easy to see that the detection limit of the mean value decrease approximately as the inverse of the square root of 

the number of individual measurements, just like the decision threshold (
nNet

Lc ).  

2.5 Ideal situations of application of the accumulation of decision threshold and opposite case  

The rules stated above are applicable as soon as the mean of measurements values have a physical or statistical sense. 

On the other hand, obtaining such spectacular results occurs only when various measurements can be regarded as 

achievements of random variables of homogeneous parameters.  

 

This condition is observed in the case of the repetition of measurements of the same sample (case n°1 and 2). If the 

samples are different (case n°3), picked up in different point or different dates, the interest of the accumulation 
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appears when these samples remain homogeneous and representative of similar average conditions. Thus we see that 

the preceding example obtained by simulation corresponds if the results obey the same real mean value µNet=18.  

 

When this condition is not observed, the averaging process can make a very significant individual measurement 

disappear. Such a situation can appear when the searched activity is present only in one sample, which can be the 

case in the search for a point source (“hot spot”) or in the case of periodic samplings, with an accidental and isolated 

contamination in time. In such a scenario, it is hardly beneficial to carry out an accumulation of measurements: the 

contaminated sample can then be measured to a significant degree positively, whereas the average result, extended to 

the whole of the other uncontaminated samples, can appear overall negative. The “accidental” (outlier) value 

disappears in the averaging process. 

 

It is good to keep that in mind when using statistical tools. They are often very relevant with values resulting from 

homogeneous population, but often lose their relevance when dealing with very heterogeneous populations.  

3 ACCUMULATION ON ENVIRONMENTAL MONITORING SAMPLES (CASE N°3)  

If one considers n  samples of rainwater collected periodically in one geographical place, it is possible to cumulate 

this information in order to get “the average content of a radionuclide given in a geographical area and over one 

specified period”. Each sample can be regarded as part of a unit made up of the sum of all the samples. The 

measurand of interest is then either the sum of the activities of all samples, or their average value. The first quantity 

is relevant when one is interested in assessments of releases, the second is more relevant if one is interested in the 

mean radioactivity of the environment.   

 

It is important to note an important difference with the preceding cases. Here each sample is likely to contain a 

partial true activity Ãi significantly different from one sample to another, whereas in the two preceding cases this true 

value was the same one for all measurements.This will impact the calculation of the detection limit, the cumulated 

decision threshold being insensitive to this potential dispersion of the true values. We exclude here the case of an 

accidental and massive punctual contamination, as discussed in chapter 2.5. 

 

Numerical application (table 9) with sixteen  periodic samples for tritium measurement in rainwater. Counting time 

of measurements is 200 min.  

 

 
Decision threshold an detection limit 

calculation 
Samples measurements values Testing values and expressed individual results 

 BkG Lc Net  (%) Lc (Bq/L) LD (Bq/L) Gross Net 
Measured 

activity (Bq/L) 
Net > Lc? 

Declaration 

(Bq/L) 

Uncertainty 

(Bq/L) 
Rel. uncert. 

Samp. 1 1020 89 21% 3.45 7.04 1024 4 0.16 NO < LD / / 

Samp. 2 857 81 30% 2.23 4.56 890 33 0.90 NO < LD / / 

Samp. 3 823 80 31% 2.15 4.41 985 162 4.38 YES 4.4 Bq/L +/- 2.3 Bq/L 51% 

Samp. 4 812 79 26% 2.49 5.10 793 -19 -0.60 NO < LD / / 

Samp. 5 903 83 31% 2.26 4.62 967 64 1.73 NO < LD / / 

Samp. 6 722 75 26% 2.38 4.88 775 53 1.69 NO < LD / / 

Samp. 7 784 78 26% 2.46 5.04 952 168 5.32 YES 5.3 Bq/L +/- 2.6 Bq/L 49% 

Samp. 8 1058 90 30% 2.48 5.06 1117 59 1.62 NO < LD / / 

Samp. 9 735 75 26% 2.39 4.89 881 146 4.63 YES 4.6 Bq/L +/- 2.5 Bq/L 54% 

Samp.10 1004 88 31% 2.39 4.88 1002 -2 -0.05 NO < LD / / 

Samp.11 899 83 30% 2.31 4.72 989 90 2.50 YES 2.5 Bq/L +/- 2.4 Bq/L 95% 

Samp.12 806 79 26% 2.49 5.10 858 52 1.65 NO < LD / / 

Samp.13 772 77 26% 2.51 5.14 797 25 0.81 NO < LD / / 

Samp.14 937 85 28% 2.57 5.25 1000 63 1.90 NO < LD / / 
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Samp.15 820 79 30% 2.23 4.56 924 104 2.92 YES 2.9 Bq/L +/- 2.3 Bq/L 79% 

Samp.16 818 79 27% 2.45 5.01 906 88 2.72 YES 2.7 Bq/L +/- 2.5 Bq/L 92% 

Accumulation by weighted average 0.60 1.22   2.07 YES 2.07 Bq/L +/-0.6 Bq/L 30% 

 

Table 7: periodic measurements of tritium in rainwater 

 

The accumulation is done here by weighted average. One notes a relative variability .rel  of efficiencies about 10% 

around an average efficiency equal to 28%. The calculation of the weighted average activity takes into account (rule 

n°1) the 16 results, including “negative activities”. These should not be rejected although a true activity can be only 

positive. Indeed a negative single measurement cannot be regarded as an estimator of the true value, but has still real 

informational contents. In practices it is important to record the values of measurements wether positive or negative, 

and not to erase them by replacing them purely and simply by the indication “< LD”.  

 

This is a recommendation made by several scientific authorities like Royal Society off Chemistry [5] or the Federal 

agency of Environmental protection of the United States [6] We can quote the MARLAP here: “ The laboratory 

should report each measurement result and its uncertainty as obtained (as recommended in Chapter 19) even if 

the result is less than zero””. This does not mean that it is necessary to have all the of measurement data (values of 

raw count, background noise, net counting value, etc). In fact only the values of the measured activity and possibly 

the dispersion of the efficiencies are necessary. It is perfectly conceivable to restore this result by specifying that it is 

lower than the detection limit but by also giving the value measured like its uncertainty.  

 

As comparison, the fact of omitting the nonsignificant results leads to an average of 3,73. Thus compared to the 

result calculated by taking account of all the values one introduces here a skew of almost 100%. This is not a simple 

calculative abstraction but corresponds to the physical case where an operator would mix these 16 samples collected 

throughout the year and would wish to compare the result of measurement of the mixture with those of 

measurements of each samples. 

 

It is thus possible to rigorously determine the annual mean value of the activity measured in these samples. If one 

admits the validity of each individual measurement, this operation of accumulation keeps any validity in so far as it 

has a sense.  It is obvious that an accumulation of measurements of samples taken in various points at various times 

would not have any sense if the samples were not representative of a single measurand defined without ambiguity. 

 

Decision threshold on the weighted average activity: 

As in the case of the gamma spectrometry the decision threshold associated with the weighted average activity is 

calculated like : 

 

 .
2

1

1ˆ
1

weigh n

i i

Lc

Lc




A . 

 

One obtains a decision threshold on the average activity equal to
-1

0,60 Bq.l , whereas the individual decision 

thresholds are about
-1

2,45 Bq.l . The gain there still is about 16 . 

 Note: if the measurand of interest is the sum of the activities .

1

ˆ ˆ
n

i

i





A A , instance in the annual statement of 

discharge calculated starting from the monthly discharges, then the application of the rule n° 2 is commonplace here 

and makes it possible to write:  
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 Associated decision threshold: 
2

.

1 1

ˆ
n n

i i

i i

Lc Lc
 

 
 

 
  AA   

 Limit of associated detection: 
2

.

1 1

ˆ
n n

i i

i i

LD LD
 

 
 

 
  AA  

 

Detection limit associated to the estimation by weighted average: 

 

The dispersion of the efficiencies characterized by the relative standard deviation of the efficiencies discussed in 

Section 3 ( .rel  ) introduce a corrective term tending to increase the limit of detection. The latter is calculated 

according to the formula: 

 . 2 2

1 .
2

1

1 1ˆ .
11 .

pond n

rel

i i

LD
k

LD
 







A . 

This expression is similar to the expression of the detection limit in the standard ISO 11929 [7]. The corrective term 
2 2

1 .1 1 . relk  
   is easily negligible when the efficiencies are little dispersed. For a beta risk equal to 2,5% the 

corrective term remains lower than 1,1 when the relative variability on the efficiencies remains lower than 15%. It is 

necessary to have a relative variability of 36% so that this term of correction is equal to 2.  

4 CONCLUSION 

The implementation of these methods, through the rules n°1 and n°2, can make it possible to lower considerably the 

decision thresholds and the detection limits in many situations: assessment of rejections, environmental 

measurements, waste etc.  Generally one can expect to decrease the decision thresholds and the detection limits by a 

factor of n , when the number of cumulatable measurements is equal to n . These methods also make it possible to 

be freed from heavy statistical treatments or strongly skewed by taking into account rigorously the whole of 

information given by measurements. This rigor of treatment also gives the possibility of determining if the whole of 

the results give significant information on the global presence or not of an element. It is important to understand the 

measurement system and the data collected so that the appropriate cumulative method is applied to the whole 

measurements. If you improve your decision threshold that means that you have first understood the way your 

measurement works, and secondly you have improved it. 

 

The application of these new methods by the Service of study and monitoring of the radioactivity in the environment 

of  IRSN, which manages annually about twenty thousand samples on the national territory, which give 

approximately about thirty thousand analyzes, should bring notable improvements in field of environment survey. 
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