The Transfer of Artificial Radionuclides in Milk and Meat after Fukushima Releases

Lionel Saey¹, Laurent Pourcelot¹, Vanessa Parachè, Sylvie Roussel-Debet¹, Rodolfo Gurriaran², Philippe Renaud¹

Pôle Radioprotection - Environnement. Service d’étude et de surveillance de la radioactivité dans l’environnement.

1 LERCA. Laboratoire d’études radioécologiques en milieu continental et marin. BP 3, 13108 Saint-Paul-lez-Durance.
2 LAMRE. Laboratoire de mesure de la radioactivité dans l’environnement. Le bois des Rames Bâtiment 501. 94600 Orsay.

Introduction: The major releases of radioactive materials into the atmosphere from the reactors accident occurring at the Fukushima Dai-ichi nuclear power station (Japan) lasted nearly 10 days, from 12 to 22 March 2011. The radioactive plume was expected after 23 March in France. This was an opportunity to measure the artificial radionuclides in the food chain.

Objectives: Evaluate in situ transfer of artificial radionuclides from the accidental releases of Fukushima in milk and meat produced in the south of France, acquire field data to strengthen the generic parameters used in models.

Methods: Sampling and radioactive measurements were carried out on milk (goat and cow) and meat (beef and sheep) at different sites (figure 1) where the herds were outside at three main stages:

a/ before the Fukushima fallout;
b/ during the time the radioactive air contamination was observed;
c/ after the return to the initial level in the atmosphere.

In addition grass was also sampled to evaluate the transfer factor of iodine and caesium in milk and meat respectively (figure 2).

Results: Three radionuclides were considered as tracers to investigate the consequences of the Fukushima radioactive deposits to the food chain: ¹³¹I, ¹³¹Cs and ¹³⁴Cs. However ¹³⁴Cs will be the only one useful to study the relation between the 3 types of samples (figure 3).

The first detectable levels of ¹³¹I and ¹³⁴Cs in grass were measured on 26/03 and 28/03 respectively. 2 to 3 days after they had been measured in milk and after only three weeks in meat for ¹³⁴Cs (figure 3).

¹³⁴Cs in meat was as follows: sheep > veal > beef > bull.

The environmental monitoring had further allowed evaluating the grass to milk transfer factors of iodine at several sites: 2.8 10⁻² and 3.6 10⁻³ d L⁻¹ for goat’s and cow’s milk respectively (Parachè et al., 2011).

The grass to meat transfer factor of caesium are 1.22 10⁻² and 6.65 10⁻¹ d kg⁻¹ for cow and sheep meat respectively.

In Cadarche, an increase of both caesium isotopes activity is observed in sheep meat in April 2011. Then ¹³⁴Cs decreases and reaches less than the detection limit in summer (figure 4). The time trends of iodine in goat’s milk and vegetation is reported, with an increase followed by a decrease of activity along time (figure 5).

Conclusions: ¹³¹I, ¹³⁴Cs had allowed to monitor the consequences of Fukushima releases in the food chains. The determined transfer factors in meat and milk were in good agreement with values reported before (Howard et al., 2009). Although ¹³⁷Cs has always been measured during monitoring, it has several sources in addition to Fukushima (Chernobyl deposits, nuclear weapons tests fallout).