Wet deposition of radionuclides in France following the Fukushima accident

Depuydt G.¹, Masson O.¹, De Vismes A.², Orjollet D.³, Renaud P.¹, Paulat P.¹

Institut de Radioprotection et de Sûreté Nucléaire, Pôle Radioprotection - Environnement. Service d’étude et de surveillance de la radioactivité dans l’environnement.

¹ Laboratoire d’Études Radioécologiques en Milieux Continental et Marin. BP 3, 13108 Saint-Paul-lez-Durance, France
² Laboratoire de Mesure de la Radioactivité dans l’Environnement, Bois des Rames, 91400 Orsay, France
³ Laboratoire de Biochimie Biodisponibilité et Transferts des radionucléides, BP3, 13108 Saint-Paul-lez-Durance, France

1 INTRODUCTION

After the Fukushima accident, the IRSN introduced quickly an extended monitoring plan to estimate potential radiological consequences due to the passage of contaminated air masses over the French territory. Part of this plan consisted in sampling rainwaters and aerosols at three sites (Figure 1) to measure their activity levels.

2 OBJECTIVES

Wet depositions of 131I (half-life of 8 days), 134Cs (half-life of 2.1 years) and 137Cs (half-life of 30.1 years) were quantified, and a particular interest focused on scavenging coefficients reflecting combined effects of in-cloud scavenging (rainout) and below-cloud scavenging (washout) of radionuclides.

3 METHODS

Rainwater was sampled with bulk collectors of 1 m² and aerosols with high-flow samplers. Activity levels in air and water were determined using low-background HPGe detectors after two different treatment protocols. Crude rainwaters were first measured in a Marinelli beaker of 3 L of capacity prior to their concentration by complete evaporation at 70°C, assuming the removal of the volatile fraction of 131I by this way.

4 RESULTS

Calculation methods for results shown below are detailed in Depuydt et al. (2012). Dry deposition for each sampling period was estimated and it was considered as a first approximation that it could be neglected compared to wet deposition. Scavenging coefficients Λ (s⁻¹) for particulate radionuclides were determined and a parametrization of the form $\Lambda = a R b$, with R the rainfall intensity, a and b specifics coefficients depending on the radionuclide studied, was deduced. Results are summarized in Table 1.

Table 1: Wet deposition values in France and scavenging coefficients

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Range of wet deposition values (mBq.m⁻²)</th>
<th>Average wet coefficient (s⁻¹)</th>
<th>Parametrization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 131I</td>
<td>432 - 31280</td>
<td>$[5,1 \pm 2,1].10^{-4}$</td>
<td>$\Lambda = 5.10^{-5} \times R^{-1,43}$</td>
</tr>
<tr>
<td>Particulate 131I</td>
<td>197 - 28300</td>
<td>$[5,1 \pm 2,1].10^{-4}$</td>
<td>$\Lambda = 2.10^{-6} \times R^{-2,30}$</td>
</tr>
<tr>
<td>134Cs</td>
<td>8 - 367</td>
<td>$[0,9 \pm 0,5].10^{-4}$</td>
<td>$\Lambda = 2.10^{-6} \times R^{-2,30}$</td>
</tr>
<tr>
<td>137Cs</td>
<td>10 - 500</td>
<td>$[1,1 \pm 0,5].10^{-4}$</td>
<td>$\Lambda = 3.10^{-6} \times R^{-2,16}$</td>
</tr>
</tbody>
</table>

In comparison, after the Chernobyl accident, the highest value of wet deposition of 137Cs was of the order of 107 mBq.m⁻² in lowland.

This parametrization was compared with a similar study performed by Jyhlä (1991) in Finland after the Chernobyl accident (Figure 2). Our parametrization is in quite good agreement for rainfall intensities higher than 0.1 mm.h⁻¹ (for 131I) or few mm.h⁻¹ (for 137Cs).

5 CONCLUSION

After the Fukushima accident, the highest deposit of 137Cs in France is negligible (~ 1%) compared to that observed following the Chernobyl accident. Scavenging coefficients estimated from in situ measurements represent the overall effect of wet deposition processes, in-cloud and below-cloud scavenging, with average values of about 5.10^{-4} s⁻¹ for particulate iodine-131 and about 1.10^{-4} s⁻¹ for cesium-137 and cesium-134.

References