Artificial radionuclides in the troposphere of Seville (Spain) due to the Fukushima accident, associated fallout and impact on the trophic chain

R.García-Tenorio^{*}, G. Manjón, J. Mantero, I. Vioque and J. Galván

Applied Nuclear Physics Research Group, University of Sevilla, Avenida Reina Mercedes, 2. 41012-Sevilla, Spain

Abstract

Radioactive emissions into the atmosphere from the damaged reactors of the Fukushima Daiichi nuclear power complex were transported in part across the Pacific Ocean to North America and then to Europe, where arrived quite diluted due to the dispersion experimented by the masses of contaminated air and their washing by rainfall during their displacement.

This paper shows the magnitude and temporal evolution of the radionuclide concentrations detected in the cited contaminated air masses at their arrival to Seville (Spain), where there is a station of the nation's environmental monitoring network equipped with high sensitivity devices for uninterrupted radiation detection. In the collected aerosol filters and during about two weeks were detected the presence of the following radionuclides: ¹³⁴Cs, ¹³⁶Cs, ¹³⁷Cs, ¹³¹I and ¹³²Te (together with its short-lived daughter ¹³²I) at minute levels and with characteristics ¹³⁴Cs/¹³⁷Cs and ¹³⁶Cs/¹³⁷Cs isotope ratios. The associated ¹³¹I fallout due to this episode was also roughly estimated from additional wet and dry deposition measurements, while the presence of ¹³¹I in gaseous form was evaluated through its collection with a pumping system equipped with a charcoal filter

It should also be noted that in Seville and surroundings, the presence of ¹³¹I with origin in the Fukushima episode was detected in several key links in the human food chain: samples of milk (goat and cow) and derivative dairy products, as well as in various broadleaf plants. The maximum levels measured for this radionuclide were 1.11 Bq/l in samples of milk and 1.42 Bq/kg wet wt in broadleaf plants, with obviously negligible radiological implications. However, no presence of ¹³²Te or ¹³⁴Cs was detected in the samples of products for human consumption tested, while the possible changes in ¹³⁷Cs activities were in most cases masked within the global fallout levels.

Key Words: Fukushima accident; radioactive aerosols; wet and dry fallout; radiological impact in Spain

1.- Introduction

An earthquake on 11 March 2011 in the Pacific Ocean at 130 km off the coast of Honchu, in Japan, followed by a large tsunami that, amongst other unfortunate consequences, damaged the refrigeration systems of the Fukushima Dai-ichi nuclear reactor complex, caused a major release of radioactive material to the atmosphere for several days following the accident.

The anthropogenic radionuclides emitted into the atmosphere from the Fukushima Daiichi reactors were partially transported across the Pacific Ocean. The radioactive cloud first reached North America (Diaz-León et al., 2011), moving afterwards towards the Atlantic Ocean and finally reaching Europe. By this time, the radioactive cloud had already been strongly diluted, and the activity had decreased due to the washout and dry deposition during the time of transport, but still detectable. The total activities of radioiodines and radiocaesiums released into the atmosphere in the Fukushima Daiichi accident have been estimated in several works (for instance, IRSN, 2011a; Stohl et al., 2011), being the most reliable values 2 10¹⁷ and 3.5 10¹⁶ Bq for ¹³¹I and ¹³⁷Cs respectively, which correspond to approximately 6% and 42% of the activity

^{*} Corresponding and presenting autor: gtenorio@us.es

of these radionuclides released into the environment after the nuclear reactor accident of Chernobyl.

On 21 March 2011, the Icelandic CTBTO International Monitoring System network station was the first in Europe to detect the presence of ¹³¹I traces in aerosols, at volumetric concentrations of 10 μ Bq/m³ as reported elsewhere (ZAMG, 2011). On March 24, the Institut de Radioprotection et de Sureté Nucléaire, IRSN (France) informed of the presence of ¹³¹I in the air (volumetric concentration of 12 μ Bq/m³) measured at one of its radiological surveillance monitoring network stations (IRSN, 2011b). In Seville, the first traces of ¹³¹I from the Fukushima accident were detected in an air filter collected in the period 21-28 March.

The present work has three main objectives. First, to make a detailed analysis of the temporal evolution of the activity levels found in the troposphere at the Sevilla station belonging to the Spanish radiological monitoring network. Second, to estimate the associated fallout in the studied area. And third, to evaluate the transfer dynamics of ¹³¹I and radiocaesiums from the atmosphere to different environmental compartments which can be considered as characteristic receptors in the trophic chain (rainwater, different types of plants and milk), assessing in all cases the corresponding radiological significance. In this way, the environmental and radiological impact can be properly assessed.

2.- Materials and Methods

2.1. Sampling: Sites and Equipment

The station that provides the data is located on the roof of the Physics Faculty at Seville (South-West of Spain). High-volume aerosol filter samples, wet- and dry-deposition samples and charcoal cartridge samples of gaseous ¹³¹I were collected. In addition, and in order to assess the influence on the food chain, samples of pasture, vegetables, milk, and cheese were collected from the vicinity of the station.

The high-volume aerosol collectors pumps in daily air volumes in the range of 10 000-16 000 m³. The aerosols are retained on polypropylene filters, with dimensions of 440×440 mm, and have a retention efficiency greater than 93%. A low-volume suction collectors was also used for the collection in series of: (a) aerosols onto filters with a 19.6 cm² cellulose surface (0.8 µm, Millipore); and (b) gaseous ¹³¹I in charcoal cartridges impregnated with TEDA (30-50 mesh). The daily volume drawn in by this low-volume samplers is in the range of 30-50 m³. The collection times used for the aerosol filters and the gaseous iodine samplers varied greatly – from a few hours up to a week – depending on the levels of radioactive contamination which were being detected.

On days without rain, the dry fallout was sampled in the station using a custom-made polyethylene collector with a surface area of 500 cm^2 containing distilled water to trap the deposited aerosol, while the wet deposition samples were obtained by using a rainwater collector with conic shape and a surface area of 1.0 m^2 .

Finally, and during the days corresponding to the highest presence of anthropogenic radionuclides in the lower atmosphere over Spain, different types of organic samples were collected: grass samples and broad-leaf vegetables (chard and spinach), as well as cow's and goat's milk and cheese. All of the above were acquired using the following protocol: a) The plants were collected on different dates, between 28th March and middle April. The grass was cut very short (to ground level) over controlled areas of known dimensions. The vegetables were bought from local farmers in areas located within the vicinity of the station, b) The cow's and goat's milk and the goat cheese samples were obtained from farms relatively close to the station on different dates between 28th March and 18th April, but with the animals feeding differently. In the case of cows, in most cases their diet consisted of commercial feed and they

had not grazed, while in the case of goats, their diet consisted only of fresh pasture. The cow cheese samples were purchased at different markets in Seville produced on known dates by a local food company.

2.2. Sample preparation and Measurements

Due to the very short time that had elapsed between sampling and the corresponding analyses, in order to provide data to the Spanish authorities as quickly as possible, preparation of the samples was done as simply and as fast as possible.

The high-volume air filters were folded and pressed to obtain surface areas of 10×10 cm², equal to the geometry of the standards used for the gamma spectrometer calibration. The vegetable and grass samples were chopped finely, without washing, and then directly measured without drying. In the case of milk samples, they were measured directly in a Marinelli beaker (1 dm³), as well as the rainwater samples (without evaporation). The cheese samples were measured directly after adapting them to the calibrated geometry of the corresponding gamma spectrometer.

All the samples were analysed by low-level gamma-ray spectrometry using one of the two following detectors: a) a extended range (XtRa) germanium detector, made by Canberra (model GX4020), with a volume crystal of 160 cm³ (relative efficiency 37,8%), and b) a REGe detector with relative efficiency of 30%. All the detectors were shielded with 10 cm of o lead, while the Xtra system was additionally equipped with an anti-coincidence device in order to increase their sensitivity.

The reported uncertainties (coverage factor k=2, unless another coverage factor is indicated) for gamma spectrometry were derived from counting statistics and uncertainties in the mixed gamma-ray reference solution. The Sevilla laboratory has participated in several national and international intercomparison exercises involving the measurement of different environmental matrices by gamma-ray spectrometry with very satisfactory results.

3.- Results and Discussion

3.1.- Aerosol filters

The first clear detection of Fukushima released radioisotopes in Seville were made in the high-volume filter collected during the period 21-28 March, At the time when the highest concentrations of artificial radionuclides in the atmosphere were over Seville, it was possible to detect the presence of ¹³¹I, ¹³⁷Cs, ¹³⁴Cs, ¹³⁶Cs, and ¹³²Te.

The greatest ¹³¹I concentration was detected for the sampling period 28-29 March, and a similar temporal pattern was found for other isotopes released from the Fukushima accident, for instance ¹³⁷Cs. As can be seen in Table 1, the highest activity concentrations always correspond to ¹³¹I due to its high volatility. The highest activity concentrations of ¹³²Te and ¹³⁶Cs were 240 and 34 μ Bq/m³, corresponding to the air filter collected in the period 28-29 March. These last nuclides were only detectable in the filters collected until the end of March.

After the maximum reached the 28-29 of March, two plateaus covering the temporal intervals 29 March- 2 April and 3 -9 April were observed (with ¹³¹I concentrations ranging between 650-850 μ Bq/m³ and 200-400 μ Bq/m³, respectively). These plateaus can be associated to the stable and static atmospheric conditions prevailing during the mentioned dates, with high pressures over the Iberian Peninsula.

In addition to the measurement of independent radionuclides, a study was made of their ratios,

looking for some additional information about the characteristics of the release. The ${}^{134}Cs/{}^{137}Cs$ activity ratio remained almost constant during the studied period, with a value close to unity. A ratio of this magnitude leads to an estimate of an average fuel burn-up of the order of 25 000 Mwd/TU, which is consistent with the evaluation provided by TEPCO that considers an average burn-up of Unit 2 of 23000 MWd/tU (Stohl et al., 2011).

Another activity ratio studied was ¹³⁶Cs/¹³⁷Cs. This ratio was less than 0.3, in agreement with the ratios found at other international stations such as those in the Ro5 (ring of five) European network (Masson et al., 2011). This low value would normally imply that the radionuclides come from fuel several days after shut-down (Stohl et al., 2011). This could indicate some release from the Unit 4 spent fuel pool (SFP) with contained a mixture of fresh and old fuel.

Date Start	Date Finish	Volume	¹³¹ I	¹³⁷ Cs	¹³⁴ Cs
sampling	Sampling	(\mathbf{m}^3)	$(\mu Bq/m^3)$	(µBq/m ³)	$(\mu Bq/m^3)$
10:00 7 March	9:45 14 March	95503	N.D.	N.D.	N.D.
10:00 14 March	9:45 21 March	101662	2.10 ± 0.25	N.D	N.D.
10:00 21 March	9:45 28 March	90851	620 ± 12	34 ± 3	32 ± 2
10:00 28 March	9:45 29 March	16500	1740 ± 40	300 ± 18	290 ± 12
10:00 29 March	9:45 30 March	16148	766 ± 23	129 ± 5	129 ± 7
10:00 30 March	9:45 31 March	17133	644 ± 20	53 ± 4	49 ± 4
10:00 31 March	9:45 1 April	16222	820 ± 26	70 ± 10	68 ± 5
10:00 1 April	9:45 2 April	16097	857 ± 25	89 ± 5	90 ± 5
10:00 2 April	9:45 3 April	19000	359 ± 17	65 ± 10	68 ± 6
10:00 3 April	9:45 4 April	16433	401 ± 32	75 ± 10	82 ± 6
10:00 4 April	9:45 5 April	16595	254 ± 19	43 ± 4	50 ± 4
10:00 5 April	9:45 6 April	15645	446 ± 19	26 ± 4	27 ± 3
10:00 6 April	9:45 7 April	14147	274 ± 21	32 ± 9	40 ± 4
10:00 7 April	9:45 8 April	15004	239 ± 16	16 ± 5	24 ± 10
10:00 8 April	9:45 9 April	14850	204 ± 18	14 ± 4	15 ± 4
10:00 9 April	9:45 11 April	30426	40 ± 6	6 ± 1	7 ± 1
10:00 11 April	9:45 13 April	35200	61 ± 7	8 ± 2	7 ± 2
10:00 13 April	9:45 15 April	27841	37 ± 3	N.D.	N.D.
10:00 15 April	9:45 18 April	38083	30 ± 2	9 ± 1	8 ± 1

Table 1.- Activity concentrations of ${}^{131}I$, ${}^{137}Cs$ and ${}^{134}Cs$ ($\mu Bq/m^3$) determined in filters collected at the Seville station

3.2 Gaseous ¹³¹I

The temporal evolution of the ¹³¹I activity concentration in gaseous form can be deduced from the data collected in Table 2. The uncertainty estimates do not consider external physical processes that might increase their values such as the particle to gas transformation in the prior filter of the charcoal cartridge, but comparing the gaseous ¹³¹I results with the results compiled in Table 1, it seems evident that a majoritary fraction of the ¹³¹I which reaches Seville from the Fukushima accident was in gaseous form.

(It is necessary to mention that due to the small volumes pumped with the gaseous iodine sampler, the limit of detection in the gaseous ¹³¹I determinations is quite high, several hundred $\mu Bq/m^3$).

Date Start	Date Finish	Volume	¹³¹ I gas
Sampling	Sampling	(m ³)	(µBq/m ³)
10:00 14 March	9:45 21 March	250	N.D.
10:00 21 March	9:45 28 March	245	2000 ± 185
10:00 28 March	9:45 31 March	114	8310 ± 660
10:00 31 March	9:45 4 April	156	4590 ± 380
10:00 4 April	9:45 8 April	148	N.D.
10:00 8 April	9:45 13 April	182	N.D.

Table 2.- Activity concentrations of gaseous ${}^{131}I$ (mBq/m³) at Seville, determined through charcoal canister measurements.

3.3 Fallout

Table 3 gives the results for rainfall collected at the Seville station and at rural area 60 km far away from the town. During the period in which the plume containing radioisotopes from the Fukushima accident was detected over Seville, there was limited rainfall. For that reason, the data are quite sparse.

In all the cases, the gamma spectrometric determinations detected only one radionuclide, ¹³¹I, in volumetric concentrations in the range 0.27-2.06 Bq/L. Neither ¹³⁷Cs nor ¹³⁴Cs were detected (minimum detectable activity in the range 0.1-0.2 Bq/L). The corresponding wet-deposition measurements indicated that the total wet-fallout of ¹³¹I at the three stations was limited (clearly less than 10 Bq/m²). The wet deposition levels found were well below the values which could be the cause for any radiological concern.

Wet-fallout					
Station	Date	¹³¹ I			
		(Bq/m ²)			
Sevilla	29 March	$\textbf{3.30} \pm \textbf{0.27}$			
Sevilla	3 April	$3.65 \pm 9,38$			
Rural area	3 April	$\textbf{2.97} \pm \textbf{0.27}$			
50 km Seville					
	Dry-fallout				
Station	Date	¹³¹ I			
		(Bq/m ²)			
Sevilla	26-28 March	< 3.0			
Sevilla	28-29 March	< 2.6			
Sevilla	30-1 April	< 1.4			
Sevilla	1-3 April	<1.8			

Table 3.- Wet- and dry ^{131}I fallout (Bq/m^2) determined in Seville at dates when traces the contaminated plume originated in the Fukushima accident were affecting the South-West of Spain

The analyses of ¹³¹I in the dry deposition at the Seville station (4 independent samples) give no value above the detection limit (see also Table 3). It is then evident from comparison of the wet and dry depositions and their associated limits of detection that, as was to be expected, a major proportion of the fallout was deposited in rainfall rather than as dry fallout. This allows us to state that the total fallout (dry + wet) of ¹³¹I over South-West of Spain did not surpass the value of 20 Bq/m². However, due to the possibility that the ¹³¹I deposited on the filter and that collected in the rainwater could have partially been transformed to gaseous ¹³¹I due to its complex chemical dynamics, and moved back into the atmosphere, the latest measurements

need to be interpreted with caution and as minimum concentrations.

For ¹³⁷Cs, one can estimate a total deposition value in South-West of Spain due to the Fukushima accident of at least a factor of ten lower than for ¹³¹I. This is not significant compared with the global accumulated ¹³⁷Cs fallout from the nuclear weapons tests performed mostly during the sixties, which, decay corrected to current dates, is of the order of 10^3 Bq/m² (Sanmiguel et al., 2003).

The order of magnitude of the total ¹³¹I fallout over Seville estimated through direct measurements of the wet and dry depositions was confirmed by means of an indirect set of measurements: undisturbed grass growing in a part of the gardens belonging to the Physics Faculty were collected. On 30 March, just after the observation of the main peak of particulate ¹³¹I airborne concentrations in Spain, grass from the lawn that had been growing for more than one week was cut in a defined area, and a representative sample was analyzed by gamma spectrometry. The value determined for the ¹³¹I mass activity concentration was 9.5 ± 0.8 Bq/kg wet weight, corresponding to an ¹³¹I accumulation of 2.1 ± 0.2 Bq/m². Taking into consideration the less than 100% effectiveness of the lawn in retaining the deposited material, this accumulation is coherent with the wet deposition in the area up to the date of collection of the sample.

Also detected in the undisturbed lawn grass were ¹³⁴Cs and ¹³⁷Cs. A total accumulation of 0.05 Bq/m^2 of ¹³⁴Cs and 0.09 Bq/m^2 of ¹³⁷Cs was found. The presence of detectable amounts of ¹³⁴Cs is indicative of the impact of the Fukushima accident on the compartment analyzed, while the ¹³⁷Cs/¹³⁴Cs ratio clearly greater than unity indicates that the ¹³⁷Cs in the lawn has another source in addition to the Fukushima accident, i.e., the deposition of some re-suspended material including ¹³⁷Cs originating from nuclear weapon tests, because the Chernobyl accident had a negligible impact in the south-west of Spain, the area in which the lawn grass analyzed was collected. Lawn samples collected at the sample place the 4th and the 12th of April give ¹³¹I activity concentrations in the troposphere and the quite short half-life of this radionuclide,

3.4. Impact on the trophic chain

Table 4 lists the range of activity concentrations detected for ¹³¹I in the different types of vegetables collected in Seville at different dates. ¹³¹I was the only radionuclide with origin in the Fukushima accident detected in these samples.

Vegetables				
Туре	Collection date	¹³¹ I (Bq/kg w,.w)		
Chards	28 March	1.42 ± 0.22		
Chards	3 April	0.36 ± 0.06		
Chards	4 april	1.05 ± 0.15		
Chards	9 april	0.32 ± 0.05		
Spinachs	7 April	0.78 ± 0.09		
Spinachs	11 April	0.31 ± 0.03		
Spinachs	12 April	0.10 ± 0.02		

Table 4.- ¹³¹*I* activity concentrations (*Bq/kg w.w.*) determined in different types of vegetabklles collected in the vicinity of Sevilla station.

These obtained levels should be compared with the maximum permitted levels of radioactive

contamination of foodstuffs and feedstuffs following a nuclear accident in Europe (EURATOM, 1989), that for vegetables and ¹³¹I are 2000 Bq/kg w.w. In any case, the maximum levels detected in the analyzed samples were some orders of magnitude below the aforementioned EURATOM limits.

A conclusion, in addition to the very weak levels detected, can be drawn from the results obtained in the vegetables: the maximum levels of ¹³¹I were detected in both locations around 29 March for all the plant types, with a clear and monotonic decrease after this date, in clear correlation with the evolution of the ¹³¹I activity concentrations in the troposphere of Sevilla. The ¹³¹I contamination of the vegetables is due to foliar deposition and attachment of aerosols (aerial route) with concentration factors in the order of 10³.

	Milk	
Туре	Collection date	¹³¹ I (Bq/L)
Goat milk	1 April	1.04 ± 0.10
Goat milk	4 April	1.11 ± 0.11
Goat milk	7 April	0.73 ± 0.07
Goat milk	9 april	0.40 ± 0.05
Goat milk	14 April	0.38 ± 0.04
Cow milk	28 March	< 0.08
Cow milk	29 March	< 0.18
Cow milk	1 April	< 0.20
Cow milk	4 April	< 0.14
Cow milk	6 April	< 0.15
Cow milk	8 April	<0.10
Cow milk	15 April	< 0.10

Table 5.- ¹³¹*I* activity concentrations (Bq/L) in cow and goat milk collected in the vicinity of the Sevilla station.

Table 5 presents the range of ¹³¹I activity levels found in cow's and goat's milk samples collected in the location of Seville at different dates. These results show that the ¹³¹I levels detected in cow's milk in no case surpassed the procedure's detection limit, LID. This may be at least partially explained by diet type. The cows under study were feeded in most cases with commercial preserved feed and they had not grazed fresh pasture.

On the contrary, detectable ¹³¹I levels were observed in all the goat's milk samples analyzed. This is in agreement with the type of diet of the goats in comparison with that of the cows (see Section 2.1), and also with the known fact that the daily proportion of ¹³¹I intake which is secreted in milk is one order of magnitude greater for sheep and goats than for cows (Howard et al., 1993). Because of this high transfer factor, goat's milks are regarded as key indicators with which to monitor or evaluate contamination after nuclear accidents. The levels detected in all the milk samples analyzed have no radiological significance because the maximum level found for ¹³¹I is at least two orders of magnitude below the limit established in Europe for the maximum permitted levels of radioactive contamination in milk following a nuclear accident in Europe (EURATOM, 1989). Only in the goat's milk sample collected the 4th of April it was possible to detect ¹³⁴Cs with an activity concentration as low as 0.19 ± 0.05 Bq/L.

If we analyze the temporal evolution of the ¹³¹I levels detected in the goat's milk samples collected in Seville, it can be additionally deduced that the timing of the maximum levels does not coincide with the maximum levels found in aerosols. There is a slight lag in the maximum corresponding to the goat's milk samples, due to the path followed by the anthropogenic radionuclides from the troposphere until their incorporation into the milk.

Finally, we have also analyzed the radioactive content in different cheese samples purchased in the vicinity of Seville station and produced during the days when the Fukushima plume passed over Spain. The only radionuclide detected was ¹³¹I, the levels measured being 0.85 ± 0.07 and 0.17 ± 0.04 Bq/kg (wet weight) in goat's and cow's cheese, respectively. The conclusion to be derived from these results is evident: the higher concentrations were found in the goat's cheese as corresponded to the higher levels that had been found in this milk type.

4. Conclusions

Detectable levels of some of the anthropogenic gamma-emitters (¹³¹I, ¹³⁷Cs, ¹³⁴Cs, ¹³⁶Cs and ¹³²Te) originating from the Fukushima accident have been measured in the troposphere over Spain. The characteristic activity ratios encountered for the contaminated plume which reached Spain are a ¹³⁴Cs/¹³⁷Cs close to unity, and a ¹³¹I gaseous/¹³¹I particulate ratio greater than unity.

The highest volumetric activity concentrations in aerosols were observed for ¹³¹I (maximum concentrations of the order of mBq/m³), with the ¹³⁷Cs and ¹³⁴Cs concentrations being at least one order of magnitude lower. Consequently, the associated fallout has had negligible radiological consequences in Spain. Indeed, the only radionuclide detected in key components of the trophic chain (vegetables, milk) was ¹³¹I at levels of no radiological significance because they were several orders of magnitude lower than the maximum permitted levels of radioactive contamination of foodstuffs and feedstuffs following a nuclear accident in Europe (EURATOM, 1989).

Acknowledgements

The authors gratefully acknowledge financial support from the Spanish Nuclear Security Council (Consejo de Seguridad Nuclear) in the framework of the Environmental Radiological Surveillance Program functioning in Spain under its control and responsibility.

References

Diaz Leon, J., Jaffe, D.A., Kaspar, J., Knecht, A., Miller, M.L., Robertson, R.G.H., Schubert A.G., 2011. Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA. J. Environ. Radioactiv. 102, 1032-1038

EURATOM, 1989. Reglamento EURATOM Nº 2218/89 del Consejo, de 18 de Julio de 1989, por el que se modifica el Reglamento (Euratom) nº 3954/87. (in Spanish).

Howard, B.J., Beresfold, N.A., Mayes, R.W., Lamb, C.S., 1993. Transfer of ¹³¹I to sheep milk from vegetation contaminated by the Chernobyl accident. J. Environ. Radioactiv. 19, 155-161..

IRSN, 2011a. Évaluation de la radioactivité rejeteé par la centrale de Fukushima Daiichi (Fukushima I). Report 22 march 2011.

IRSN, 2011b. Synthèse des resultats des mesures de la radioactivité dans le cadre de la surveillance de l'impact à très longue distance des rejects de l'accident de Fukushima. Report 26 march 2011.

Masson, O., Baeza, A., Bieringer, J., Brudecki, K., Bucci, S., Cappai, M., Carvalho, F. P., Connan, O., Cosma, C., Dalheimer, A., Didier, D., Depuydt, G., De Geer, L.E., De Vismes, A., Gini, L., Groppi, F., Gudnason, K., Gurriaran, R., Hainz, D., Halldórsson, Ó., Hammond, D., Hanley, O., Holeý, K., Homoki, Zs., Ioannidou, A., Isajenko, K., Jankovic, M., Katzlberger, C., Kettunen, M., Kierepko, R., Kontro, R., Kwakman, P.J.M., Lecomte, M., Leon Vintro, L., Leppänen, A.-P., Lind, B., Lujaniene, G., Mc Ginnity, P., Mc Mahon, C., Malá, H., Manenti, S.,

Manolopoulou, M., Mattila, A., Mauring, A., Mietelski, J.W., Møller, B., Nielsen, S.P., Nikolic, J., Overwater, R.M.W., Pálsson, S.E., Papastefanou, C., Penev, I., Pham, M.K., Povinec, P.P., Ramebäck, H., Reis, M.C., Ringer, W., Rodriguez, A., Rulík, P., Saey, P.R.J., Samsonov, V., Schlosser, C., Sgorbati, G., Silobritiene, B. V., Söderström, C., Sogni, R., Solier, L., Sonck, M., Steinhauser, G., Steinkopff, T., Steinmann, P., Stoulos, S., Sýkora, I., Todorovic, D., Tooloutalaie, N., Tositti, L., Tschiersch, J., Ugron, A., Vagena, E., Vargas, A., Wershofen, H., Zhukova, O., 2011. Tracking of Airborne Radionuclides from the damaged Fukushima Dai-ichi nuclear reactors by European networks. Environ. Sci. Technol. 45, 7670-7677

Sanmiguel, E.G., Bolivar, J.P., García-Tenorio, R., 2003. Mixing, sediment accumulation and focusing using Pb-210 and Cs-137. J. Paleolimnol. 29, 1-11.

Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt S., Tapia, C., Vargas, A., Yasunari, T.J., 2011. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition, Atmos. Chem. Phys. 11, 28319-28394 (http://www.atmos-chem-phys-discuss.net/11/28319/2011/acpd-11-28319-2011-discussion.html).

ZAMG (Zentralanstalt für Metereologie und Geodynamik), 2011. Accident in the Japanese NPP Fukushima: Large emissions of Cesium-137 and Iodine-131 / Spread Radioactivity / weather currently favourable / low level radioactivity observed in Iceland. Report 24 March 2011.