Radiation Protection Considerations in the Primary Approvals Phases of Major Projects

Im Hondros

IRHC Enterprises AUSTRALIA

jim@jrhc.com.au

In Australia, mining projects involving uranium require approval from the national and state governments. This involves conducting an impact assessment followed by a period of public review and subsequent response to government or public concerns.

Impact assessment are broad and usually cover; environmental, social, health, public safety and economic aspects.

Information needs to be communicated in a credi-

ble and understandable manner for all audiences. This means making complex information simpler, while making sure that it maintains its technical integrity.

Poorly communicated information, which is overly complex, overly simplified or incomplete, can result in significant delays to the project approval which can potentially impact on project timelines.

Radiation and its impacts usually draw a disproportionate amount of both government and public

scrutiny compared to other potential impacts and risks.

Radiation assessments need to be clearly presented and communicated with sufficient detail so that all stakeholders can understand the impacts and make informed decisions. This requires a balance between scientific fact, digestible information and demonstrable competence.

This presentation outlines the basic radiation protection for an impact assessment.

Radiation Impact Assessment

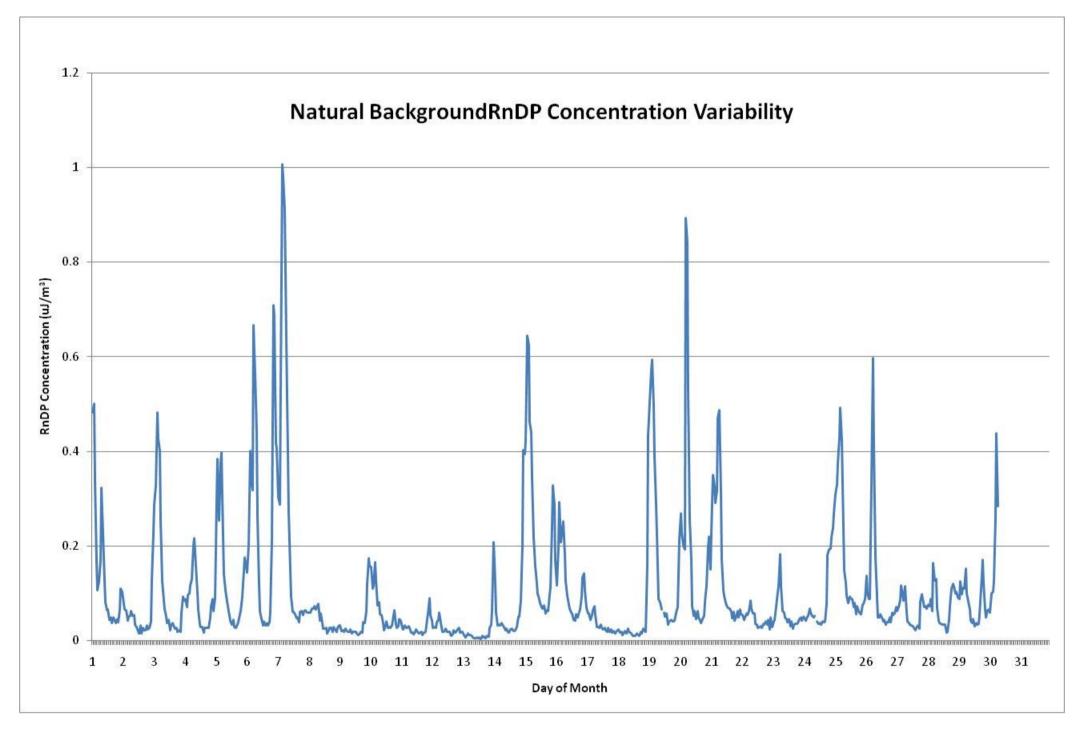
Impact assessments are usually based on an agreed terms of reference which define the minimum requirements for the assessment. Typically these are:

Baseline Characterisation

 \succ The proponent is responsible for the radiation increment above pre-existing levels >Undertake adequate baseline monitoring including:

Radiation Impact Assessment

>Assess *impact* from any increment


>Estimate Doses for Workers, the Public (sensitive receptors) and to non human

biota (eg: using an ERICA assessment)

Table I: Methods tor Calculating Projected Doses

- Broad area gamma radiation surveys
- Radon and Radon decay product (RnDP) concentrations in air (real time monitoring shows any diurnal or seasonal variation)

• Radionuclides concentrations in Airborne Particulates, Surface Water, Groundwater, Vegetation (short+long lived) & Fauna

>Monitor potential exposure pathways

>Present data in understandable manner

Determining Incremental Radiological Concentrations

Exposure Situa- tion	Exposure Pathway			
	Gamma Radiation	Inhalation of Radon Decay Products	Inhalation of Radionuclides in Dust	
Exploration	Calculate based on uranium ore grade & exposure time	Usually negligible - review results from elsewhere	Usually negligible - review results from elsewhere	
Mine workers	<i>Review doses from similar mines/calculate based on ore grade</i>	Calculate based on ventila- tion rates	<i>Usually low — calculate based on estimated ore grade and dust concentra- tions</i>	
Processing plant workers	<i>Consider type of material in area & calculate use results form elsewhere</i>	1 01	<i>Consider type of material in particular area and calculat — or use results form else-where</i>	
Transport	<i>Estimate from other similar</i> <i>activities</i>	No reasonable exposure situ- ation	No reasonable exposure situ ation	
Public	Negligible at distance	From air quality modelling	From air quality modelling	

>Provide sufficient information to justify any assumptions in impact assessment

Table 2: Calculated Radon Emission Rates from Fictional Project for Air Quality Modelling

	Peak Year of Production		
Activity	Area (ha)	Radon Emission Rates (Bq/m²/s)	Total Emission (kBq/s)
Open Mine Pit	100	3.6	3600

due to the Operation

- >The potential increment above baseline can be determined through;
 - Modelling
 - Consideration of other similar operations
 - First principles/"rules of thumb"

 \succ Be conservative when making assumptions >Examples of increment assessment include;

- Contaminant and fate modeling
- Air quality modeling for dust deposition and dust concentrations
- Using first principles for determining gamma radiation levels

Waste Stockpiles 40 480 1.2 Tailings Dry Beach area 25 750 3.0 Tailings Water covered 30 0.05 15

Management Controls

- >Describe the company approach/philosophy
- >Describe the management measures
- >Identify how ALARA would be implemented
- >Describe the Radiation Management Plan and the Radioactive Waste Management Plan

Conclusions

>Demonstrate internal competency by conducting baseline monitoring properly

- >Understand the radiation background
- > Present data understandably
- >Ensure that information is presented for the multiple audiences (technical, government and public) \succ Don't assume that people will just "get it"