Occupational radiation doses of United Kingdom high altitude mountain guides as a result of cosmic ray exposures.

Robert W Kerr^{a*}

^aRP Alba Ltd, Geanies House, Fearn, Tain, Ross-shire, Scotland, IV20 1TW, UK.

Abstract

UK based mountain guides lead multiple expeditions throughout the course of a year. They will receive radiation doses from cosmic rays during air travel and their time spent at elevated altitudes in the mountains of the world. These radiation doses are received as part of their employment.

This paper illustrates that UK based high altitude mountain guides can potentially receive greater than 1 milliSv per year of cosmic radiation dose in excess of what they would have received at ground level. These individuals are "occupationally exposed" to cosmic radiation as a result of their profession.

The European Community Basic Safety Standards Directive 96/29/EURATOM does not apply to exposure to cosmic radiation prevailing at ground level. The highest "ground level" that a UK mountain guide may be working at is 8848m. The maximum flying altitude of some internal flights in the UK is 7925m. 96/29/EURATOM does apply to cosmic radiations being received by aircrews therefore there is an anomaly in radiation protection where the cosmic radiation exposures of aircrew operating for short durations at altitudes lower than mountain guides operating at high altitudes for prolonged times have to be taken into account. UK based high altitude mountain guides are undergoing planned occupational exposures to cosmic radiation whilst still on the ground.

Consideration should be given by the legislative authorities to include the control and assessment of cosmic radiation exposures of professionals likely to receive greater than 1 milliSv per year of cosmic radiation in excess of what would have been received in their home country at ground level.

In their next set of recommendations, the ICRP should consider whether the occupational cosmic radiation exposure of high altitude mountain guides should be included as a specialised group for whom some control and assessment of cosmic radiation exposures may be justified.

KEYWORDS: Radiation dose, cosmic ray, high altitude, mountain guide, seven summits.

1. Introduction

The United Kingdom (UK) has a mountaineering and exploration tradition. UK citizens routinely travel overseas to various extreme environments and nowadays their activities are often facilitated by specialised expedition logistics companies. These companies routinely provide a UK based professional mountain guide to lead expeditions to the Earth's extremes. These UK based mountain guides will often lead multiple expeditions throughout the course of a year. They will receive radiation doses from ultraviolet radiation (UVR) and cosmic rays during air travel and their time spent at elevated altitudes in the mountains of the world. These radiation doses are received as part of their employment.

Studies have shown that mountain guides receive considerable UVR doses [1] due to altitude related increase of UVR [2] and reflection from snow and ice covered surfaces. Their daily UVR doses will depend on the latitude in which they are working, the time of day and the meteorological conditions prevailing at the time [3]. Exposure to solar ultraviolet radiation is an occupation health and safety issue [4] for mountain guides and controls are often put in place to mitigate exposures such as use of sunscreen, use of suitable goggles or glasses, and the wearing of clothing to minimise the exposure of skin.

^{*} Presenting author, E-mail: rkerr@rp-alba.com

In Publication 60 [5], the ICRP suggested the inclusion of exposure to elevated levels of natural radiation as occupational exposure. It is known that air crew can receive considerable cosmic radiation doses during the course of their employment [6] and legislation exists for the control of their radiation doses [7, 8]. Passengers on aircraft, including frequent flyers, are not included in this legislation at present. The ICRP currently maintains the view that it is not necessary to treat the exposure of frequent flyer passengers as occupationally exposed for the purpose of control [9, 10].

Mountain guides are a special group of frequent flyers who not only routinely travel long haul routes but upon arrival at their destination spend significant amounts of time at elevated altitudes. This paper estimates the potential magnitude of cosmic radiation doses for a hypothetical UK based high altitude mountain guide assisting a client to ascend all of the seven summits [11] in a year. Modelling of this hypothetical scenario helps determine whether significant cosmic radiation doses are being received by this group of workers and whether controls should be considered in future legislation for this group of employees.

2. Cosmic radiation

Cosmic radiation can be divided into various types and there are three important sources of cosmic radiation when considering human doses: galactic cosmic radiation (GCR), solar cosmic radiation (SCR) and radiation from the Earth's (van Allen) radiation belts [12]. In the case of mountain guides it is only the contribution from galactic and solar cosmic radiations that need to be taken into account.

Cosmic radiation comes from the outside the Earth and consists of different types of highly charged particles such as protons, helium nuclei, some other heavier nuclei and electrons. The Earth is continually exposed to cosmic radiation and it enters the Earth's atmosphere from all directions. When these high energy particles enter the Earth's lower atmosphere they generate secondary particle showers [13].

Galactic cosmic ray fluence varies with solar activity, being lower when the solar activity is higher [12]. Solar activity varies on average with a 11 year periodicity [14]. GCR particles have to penetrate the Earth's magnetic field and as a result of this influence the number of particles penetrating close to the poles is higher than near the equator [12].

Solar cosmic radiation (SCR) originates from solar flares when the particles, mostly protons, are directed towards the Earth. Solar flares occur more frequently at the period of maximum solar activity. Due to SCR having lower energy than GCR the influence of the Earth's magnetic field is much more important to SCR penetration through the Earth's atmosphere, hence there are more SCR particles penetrating close to the poles than near the equator [12].

UK mountain guides will be exposed to both GCR and SCR during the delivery of their work and the precise doses received will vary depending on the latitude and altitude worked in, as well as the solar cycle.

The European Community Basic Safety Standards Directive 96/29/EURATOM [7] does not apply to exposure to cosmic radiation prevailing at ground level. The highest altitude in the United Kingdom is 1344 m (4,409'). The highest "ground level" that a UK mountain guide may be working at, when overseas and not in an aircraft is 8848m (29,028') [11].

The maximum flying altitude of the BAe Jetstream 41 aircraft, which services numerous internal flights in the UK, is 7925m (26,000') and its typical cruising altitude is 6700m (22,000'). 96/29/EURATOM [7] does apply to cosmic radiations being received by aircrews therefore there is an anomaly in radiation protection where the cosmic radiation exposures of aircrew operating for short durations at altitudes lower than mountain guides operating at high altitudes for prolonged times have to be taken into account. UK based high altitude mountain guides are essentially undergoing planned occupational exposures to cosmic radiation whilst still on the ground.

3. Seven summits

The term "seven summits" [11] refers to the highest mountain on each of the Earth's seven continental plates. There are two principal variations on what constitutes the seven summits as there is some debate on the definition [15] of the continents therefore most mountaineers aspiring to ascend the seven summits actually do eight summits. Various mountain guides have ascended all of the seven summits and some have made multiple ascents of them.

The hypothetical UK based high altitude mountain guide scenario being used in this paper is an ascent of each of the seven summits in the space of a calendar year (with an ascent of the harder Carstensz Pyramid rather than Australia's Kosciuszko). In 2007 the UK based company Adventure Peaks, using one UK based high altitude mountain guide, successfully took a client up these seven summits in a new world record time of 156 days [16]. The seven summits are Aconcagua, Carstensz Pyramid, Elbrus, Mount Everest (also known as Sagamartha or Chomolungma), Denali (also known as Mount McKinley), Kilimanjaro and Mount Vinson.

By taking clients to do the seven summits, UK based high altitude mountain guides will receive a greater cosmic radiation exposure through the delivery of their work than they would have received by doing guiding work in the much lower altitude mountains of the UK.

Mountain guides are a special group of frequent flyers who not only routinely travel long haul routes but upon arrival at their destination spend significant amounts of time at elevated altitudes. The following sections estimate the potential magnitude of cosmic radiation doses for a UK based high altitude mountain guide assisting a client to ascend each of the seven summits. For the purposes of these estimates it is assumed that the guide is based in Glasgow, Scotland.

For the purposes of consistency, all cosmic radiation exposures estimated were performed using the "Federal Aviation Administration Office of Aerospace Medicine Galactic Radiation Received in Flight" calculator [17]. All cosmic radiation dose rate estimates are based on an average value for the 2011 calendar year.

For all country internal flights it is assumed that it takes 30 minutes to get up to cruising altitude and that the internal flight cruised at 34,000' for a period of time prior to taking 30 minutes to gradually descend and touchdown. For all long haul flights it is assumed that it takes 30 minutes to get up to a cruising altitude of 34,000' where the plane will remain for half of the cruise time, then the remainder of the cruise time will be spent at an altitude of 40,000' prior to taking 30 minutes to gradually descend and touchdown. For all internal flights on small aircraft a cruising height of 20,000' is assumed. For the purposes of this paper it is assumed that the mountain guides are not travelling on any aircraft which are also carrying any class 7 dangerous goods (radioactive materials) such as radiopharmaceuticals for medical diagnosis and treatment.

For estimates of cosmic radiation dose rates whilst at ground level, reference [17] was used to determine a dose rate per hour for a flight at the elevation of interest between two airports of the same latitude as the mountain of interest. For the purposes of generating data for this paper it is assumed that the cosmic radiation dose rates at the same latitudes north and south of the equator are equivalent. Using this approach the data in table 1 has been generated, for use in the subsequent sections, to determine the potential cosmic doses received by UK high altitude mountain guides whilst at various altitudes. Appendix A provides the supporting information for the results presented in the following sections.

10010 1.	Table 1. Cosmic radiation dose rates (in microsv/ni) at different attitudes on the seven summits								
Elevation (in feet)	Elevation (in m)	Glasgow, UK (Sea level)	Aconcagua (6960m)	Carstensz Pyramid (4884m)	Elbrus (5642m)	Everest (8848m)	Denali (6194m)	Kilimanjaro (5895m)	Mount Vinson (4897m)
0	0	0.05	0.04	0.03	0.04	0.03	0.05	0.03	0.05
3000	914	0.06	0.05	0.04	0.06	0.04	0.06	0.04	0.06
6000	1829	-	0.08	0.07	0.09	0.07	0.10	0.07	0.10
9000	2743	-	0.12	0.11	0.15	0.11	0.18	0.11	0.18
12000	3658	-	0.20	0.17	0.25	0.18	0.31	0.17	0.31
13500	4115	-	0.26	0.22	0.32	0.23	0.41	0.22	0.41
15000	4572	-	0.33	0.27	0.40	0.29	0.53	0.27	0.53
16500	5029	-	0.41	0.34	0.51	0.37	0.68	0.34	0.68
18000	5486	-	0.51	-	0.65	0.46	0.88	0.43	-
19000	5791	-	0.59	-	0.75	0.52	1.03	0.49	-
20000	6096	-	0.68	-	-	0.60	1.19	0.56	-
21000	6401	-	0.77	-	-	0.68	1.39	-	-
22000	6706	-	0.88	-	-	0.77	-	-	-
23000	7010	-	0.99	-	-	0.87	-	-	-
24000	7315	-	-	-	-	0.98	-	-	-
25000	7620	-	-	-	-	1.09	-	-	-
26000	7925	-	-	-	-	1.21	-	-	-
27000	8230	-	-	-	-	1.34	-	-	-
28000	8534	-	-	-	-	1.47	-	-	-
29000	8839	-	-	-	-	1.62	-	-	-

Table 1: Cosmic radiation dose rates (in microSv/hr) at different altitudes on the seven summits

3.1 Aconcagua, Argentina

The highest point in South America is Aconcagua in the Andes mountain chain. Its elevation is 6,960m (22,834'). To ascend Aconcagua is typically a 24 day expedition including travel from and back to the UK. It is estimated that this will involve approximately 34 hours flying with an associated estimated cosmic radiation exposure of 99.2 microSv. The cosmic radiation dose estimate calculated for an ascent of Aconcagua, based on the itinerary given by the UK guiding company Adventure Peaks [18] and the assumptions stated above, is 160.8 microSv. This gives a total cosmic radiation dose of 0.260 milliSv. If the UK based guide had spent these 24 days guiding in the UK, spending 50% of the time at sea level and the other 50% at 3000' then a dose of 0.032 milliSv would have been received. Therefore the typical occupational exposure for a UK high altitude mountain guide to lead an expedition to Aconcagua is estimated to be 0.228 milliSv.

3.2 Carstensz Pyramid, Papua

The highest point on the Oceania/Australia continent is Carstensz Pyramid in Papua. Its elevation is 4,884m (16,024'). To ascend Carstensz Pyramid is typically a 22 day expedition including travel from and back to the UK. It is estimated that this will involve approximately 49 hours flying with an associated estimated cosmic radiation exposure of 125.2 microSv. The cosmic radiation dose estimate calculated for an ascent of Carstensz Pyramid, based on the itinerary given by the UK guiding company Adventure Peaks [18] and the assumptions stated above, is 68.6 microSv. This gives a total cosmic radiation dose of 0.194 milliSv. If the UK based guide had spent these 22 days guiding in the UK, spending 50% of the time at sea level and the other 50% at 3000' then a dose of 0.029 milliSv would have been received. Therefore the typical occupational exposure for a UK high altitude mountain guide to lead an expedition to Carstensz Pyramid is estimated to be 0.165 milliSv.

3.3 Elbrus, Europe

The highest point on the European continent is Mount Elbrus in the Caucasus mountains. Its elevation is 5,642m (18,510'). To ascend Mount Elbrus is typically a 14 day expedition including travel from and back to the UK. It is estimated that this will involve approximately 14.5 hours flying with an associated estimated cosmic radiation exposure of 59.7 microSv. The cosmic radiation dose estimate calculated for an ascent of Elbrus, based on the itinerary given by the UK guiding company Adventure Peaks [18] and the assumptions stated above, is 64.6 microSv. This gives a total cosmic radiation dose of 0.124 milliSv. If the UK based guide had spent these 14 days guiding in the UK, spending 50% of the time at sea level and the other 50% at 3000' then a dose of 0.018 milliSv would have been received. Therefore the typical occupational exposure for a UK high altitude mountain guide to lead an expedition to Elbrus is estimated to be 0.106 milliSv.

3.4 Mount Everest, Asia

The highest point on the Asian continent is Mount Everest. Its elevation is 8,848m (29,028'). To ascend Mount Everest is typically a 72 day expedition including travel from and back to the UK. It is estimated that this will involve approximately 25.5 hours flying with an associated estimated cosmic radiation exposure of 85.4 microSv. The cosmic radiation dose estimate calculated for an ascent of Everest, based on the itinerary given by the UK guiding company Adventure Peaks [18] and the assumptions stated above, is 1011.9 microSv. This gives a total cosmic radiation dose of 1.097 milliSv. If the UK based guide had spent these 72 days guiding in the UK, spending 50% of the time at sea level and the other 50% at 3000' then a dose of 0.095 milliSv would have been received. Therefore the typical occupational exposure for a UK high altitude mountain guide to lead an expedition to Everest is estimated to be 1.002 milliSv. This one mountain represents a significant radiation exposure to high altitude mountain guides.

3.5 Denali (Mount McKinley), North America

The highest point on the North American continent is Denali. Its elevation is 6,194m (20,320'). To ascend Denali is typically a 25 day expedition including travel from and back to the UK. It is estimated that this will involve approximately 32.5 hours flying with an associated estimated cosmic radiation exposure of 189.7 microSv. The cosmic radiation dose estimate calculated for an ascent of Denali, based on the itinerary given by the UK guiding company Adventure Peaks [18] and the assumptions stated above, is 207.9 microSv. This gives a total cosmic radiation dose of 0.398 milliSv. If the UK based guide had spent these 25 days guiding in the UK, spending 50% of the time at sea level and the other 50% at 3000' then a dose of 0.033 milliSv would have been received. Therefore the typical occupational exposure for a UK high altitude mountain guide to lead an expedition to Denali is estimated to be 0.365 milliSv.

3.6 Kilimanjaro, Africa

The highest point on the African continent is Kilimanjaro. Its elevation is 5,895m (19,340'). To ascend Kilimanjaro is typically a 13 day expedition including travel from and back to the UK. It is estimated that this will involve approximately 20.5 hours flying with an associated estimated cosmic radiation exposure of 59.4 microSv. The cosmic radiation dose estimate calculated for an ascent of Kilimanjaro, based on the itinerary given by the UK guiding company Adventure Peaks [18] and the assumptions stated above, is 36.8 microSv. This gives a total cosmic radiation dose of 0.096 milliSv. If the UK based guide had spent these 13 days guiding in the UK, spending 50% of the time at sea level and the other 50% at 3000' then a dose of 0.017 milliSv would have been received. Therefore the typical occupational exposure for a UK high altitude mountain guide to lead an expedition to Kilimanjaro is estimated to be 0.079 milliSv.

3.7 Mount Vinson, Antarctica

The highest point on the Antarctica continent is Mount Vinson. Its elevation is 4,897m (16,023'). To ascend Mount Vinson is typically a 19 day expedition including travel from and back to the UK. It is estimated that this will involve approximately 48.75 hours flying with an associated estimated cosmic radiation exposure of 170.8 microSv. The cosmic radiation dose estimate calculated for an ascent of Vinson, based on the itinerary given by the UK guiding company Adventure Peaks [18] and the assumptions stated above, is 69.4 microSv. This gives a total cosmic radiation dose of 0.240 milliSv. If the UK based guide had spent these 19 days guiding in the UK, spending 50% of the time at sea level and the other 50% at 3000' then a dose of 0.025 milliSv would have been received. Therefore the typical occupational exposure for a UK high altitude mountain guide to lead an expedition to Vinson is estimated to be 0.215 milliSv.

4. Discussion

The hypothetical scenario presented in section 3, and supported by Appendix A, illustrates the cosmic radiation doses that an UK high altitude mountain guide could receive whilst taking clients up each of the seven summits in the same calendar year. Table 2 summarises the cosmic radiation exposures associated with this work and the estimated dose if the mountain guide had remained in the UK to work for the duration of these expeditions. Figures 1 and 2 illustrate the estimated expedition cosmic radiation dose distribution graphically for each of the seven summits.

Mountain guided	Cosmic radiation received on expedition (microSv)	Cosmic radiation received during flights (microSv)	Total Cosmic radiation dose received for expedition (microSv)	Cosmic radiation received for same time period in UK (microSv)	Occupational exposure received from leading these expeditions (milliSv)
Aconcagua	160.8	99.2	260	31.7	0.228
Carstensz Pyramid	68.6	125.2	193.8	29.0	0.165
Elbrus	64.6	59.7	124.3	18.5	0.106
Everest	1011.9	85.4	1097.3	95.0	1.002
Denali	207.9	189.7	397.6	33.0	0.365
Kilimanjaro	36.8	59.4	96.2	17.2	0.079
Mount Vinson	69.4	170.8	240.2	25.1	0.215
Totals	1620	789.4	2409.4	249.5	2.160

Table 2: Summary of cosmic radiation dose exposure information

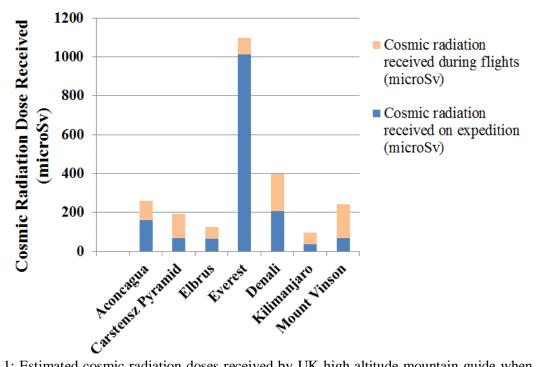


Figure 1: Estimated cosmic radiation doses received by UK high altitude mountain guide when taking clients up each of the seven summits. Data based on cosmic radiation average for 2011.

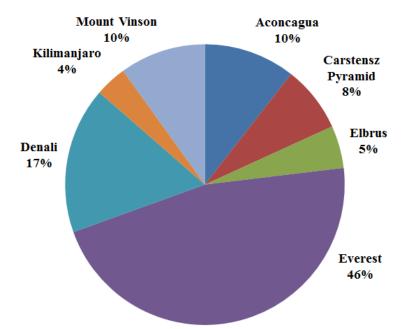


Figure 2: Contribution of individual expeditions to the UK based guide's estimated occupational exposure of 2.16 milliSievert for the hypothetical situation modelled in Figure 1.

UK based high altitude mountain guides do receive occupational radiation dose from cosmic radiation both at ground level and during transit whilst in aircraft. To guide one client up all of the seven summits takes approximately 189 days, involves approximately 225 hours of flying and results in over 2 milliSv of occupational radiation dose of which over two thirds of the dose is received whilst at ground level overseas. An ascent of Mount Everest gives greater than 1 milliSv of dose at ground level and as such is a significant radiation dose [19], if the UK Ionising Radiations Regulations 1999 were to be applied to this existing exposure situation.

Due to meterological conditions it is highly unlikely that any mountain guides would attempt to lead clients up more than two or three 8000 metre peaks in a calendar year. It is conceivable, although very

unlikely, for a UK based high altitude mountain guide to make two rounds of the seven summits in a calendar year therefore it is likely that the occupational cosmic radiation exposure of UK mountain guides may be bounded at the region of 4 milliSv per annum. However it should be noted that their occupational cosmic radiation exposures could be higher depending on the solar cycle and cosmic radiation levels at the time and location of their work.

As some UK high altitude mountain guides can receive greater than 1 milliSv per year from cosmic radiation, after UK cosmic radiation doses have been subtracted, these personnel must therefore be officially considered "occupationally exposed to radiation". Reference [20] states that "Although air couriers and other exceptionally frequent flyers are not mentioned in Article 42" of reference [7], "it is recommended that employers of such individuals should make arrangements for determining doses similar to those made by airlines for their staff."

In the United Kingdom, the Air Navigation Order 2000 [8] requires protection of air crew from cosmic radiation as part of the implementation of Article 42 [7]. This requires the assessment of the exposure to cosmic radiation when in flight of those air crew who are liable to be subject to cosmic radiation in excess of 1 milliSv per year. It also requires that assessment of cosmic radiation exposure be taken into account when organising work schedules and inform the workers concerned of the health risks their work involves, etc.

UK high altitude mountain guides are aware of a wide range of highly significant hazards in their work environments (such as extreme cold, frostbite, avalanches, hypoxia, pulmonary oedema, cerebral oedema, rock fall, and ultraviolet radiation) but are perhaps not fully aware of their increased exposure to cosmic radiation.

Consideration should be given by the legislative authorities to include the control and assessment of cosmic radiation exposures of professionals likely to receive greater than 1 milliSv per year of cosmic radiation in excess of what would have been received in their home country at ground level.

5. Conclusions

High altitude mountain guides from the United Kingdom can potentially receive greater than 1 milliSv per year of cosmic radiation dose in excess to what they would have received at UK ground level. These individuals are occupationally exposed to cosmic radiation as a result of their profession.

Consideration should be given by the legislative authorities to include the control and assessment of cosmic radiation exposures of professionals likely to receive greater than 1 milliSv per year of cosmic radiation in excess of what would have been received in their home country at ground level.

In their next set of recommendations, the ICRP should consider whether the occupational cosmic radiation exposure of high altitude mountain guides should be included as a specialised group for whom some control and assessment of cosmic radiation exposures may be justified.

REFERENCES

[1] Moehrle, M., B. Dennenmoser, et al (2003). "Continuous long-term monitoring of UV radiation in professional mountain guides reveals extremely high exposure." International Journal of Cancer **103**(6):775-8.

[2] Blumthaler MB, Ambach W, Ellinger R. Increase in solar UV radiation with altitude. *J Photochem Photobiol B Biol* 1997; **39**: 130-134.

[3] UNITED KINGDOM NATIONAL RADIOLOGICAL PROTECTION BOARD AT A GLANCE SERIES POSTER titled Ultraviolet Radiation, 1995.

[4] "Solar Ultraviolet Radiation Exposure of Outdoor Workers: The Case of New Zealand outdoor workers", by Vanessa Hammon, Lambert Academic Publishing, 2011. ISBN 978-3-8454-0642-8.
[5] ICRP Publication 60: "1990 Recommendations of the International Commission on Radiological Protection", Ann. ICRP 21(1-3), 1991.

[6] Commission of the European Communities (1996): Radiation Protection 85: Exposure of Air Crew to Cosmic Radiation. A Report of EURADOS Working Group 11, EURADOS Report 1996-01.

[7] Council Directive 96/29/EURATOM of 13 May 1996 Laying Down the Basic Safety Standards for Protection of the Health of Workers and the General Public Against the Dangers Arising from Ionising Radiation. Official Journal of the European Communities 39, L159.

[8] UNITED KINGDOM LEGISLATION: Civil Aviation - The Air Navigation Order 2000 (Statutory Instrument 2000/1562, ISBN 0110994086).

[9] ICRP Publication 75: "General principals for the radiation protection of workers", Ann. ICRP 27(2), 1997.

[10] ICRP Publication 103: "The 2007 Recommendations of the International Commission on Radiological Protection", Ann. ICRP 37(2-4), 2007.

[11] "Seven Summits – The Quest to Reach the Highest Point on Every Continent", by Steve Bell, 2006. ISBN 0-517-22750-9.

[12] "Radiation doses at high altitudes and during space flights", *Radiation Physics and* Chemistry, Volume 61, June 2001, Pages 301-307, by F Spurný.

[13] "Sources and effects of ionizing radiation", United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR 2008 Report to the General Assembly with Scientific Annexes Volume I, ISBN 978-92-1-142274-0.

[14] "The global signal of the 11-year solar cycle in the stratosphere: observations and models", *Journal of Atmospheric and Solar-Terrestrial Physics, Volume 64, Issue 2, January 2002, Pages 203-210*, by Karin Labitzke, John Austin, Neal Butchart, Jeff Knight, Masaaki Takahashi, Miwa Nakamoto, Tatsuya Nagashima, Jo Haigh, and Vic Williams.

[15] "Seven Summits: Defining the Continents", by Dr Adam Helman, 2008,

http://www.cohp.org/personal/Seven_Summits_essay/seven_summits_essay.html

[16] http://www.adventurepeaks.com/news/item/summit-success

[17] Federal Aviation Administration Office of Aerospace Medicine Galactic Radiation Received in Flight calculator, http://jag.cami.jccbi.gov/cariprofile.asp

[18] http://www.adventurepeaks.com

[19] UNITED KINGDOM LEGISLATION: The Ionising Radiations Regulations 1999, Statutory Instrument 1999/3232, ISBN 0110856147.

[20] Commission of the European Communities (1997): Radiation Protection 88: Recommendations for the implementation of Title VII of the European Basic Safety Standards Directive (BSS) concerning significant increase in exposure due to natural radiation sources.

Appendix A – Data sets used to formulate cosmic radiation dose estimates of UK based high altitude mountain guides.

Flight	Duration of flight	Estimated dose (microSv)
Glasgow to London	1 hour 30 minutes	4.2
London to Buenos Aires	13 hours 40 minutes	42.3
Buenos Aires to Mendoza	1 hour 50 minutes	3.1
Mendoza to Buenos Aires	1 hour 50 minutes	3.1
Buenos Aires to London	13 hours 40 minutes	42.3
London to Glasgow	1 hour 30 minutes	4.2
Totals:	34 hours	99.2

Table A1: Cosmic radiation dose estimate during flights for an ascent of Aconcagua

Table A2: Cosmic radiation dose estimate whilst on the ground during an Aconcagua expedition

Day	Description	Approximate	Estimated time	<u> </u>	Dose estimate
	-	Altitude (m)	at altitude	estimate	(microSv)
			(hours)	(microSv/hr)	
1-2	International flights	0	12	0.05	0.60
	C	760	19	0.05	0.95
3	Stay in Mendoza	760	24	0.05	1.20
4	Travel to Puente del Inca	760	10	0.05	0.50
		2720	14	0.12	1.68
5	Trek to Pampa de Lenas	2720	8	0.12	0.96
	_	2867	16	0.13	2.08
6	Trek to Casa de Piedra	2867	8	0.13	1.04
		3245	16	0.16	2.56
7	Trek to Plaza Argentinas	3245	8	0.16	1.28
		3700	8	0.20	1.60
		4203	8	0.26	2.08
8	Rest day	4203	24	0.26	6.24
9	Load carry to camp 1 at	4203	16	0.26	4.16
	5000m and return	4600	8	0.33	2.64
10	Load carry to camp 1 at	4203	16	0.26	4.16
	5000m and return	4600	8	0.33	2.64
11	Move to camp 1	4203	8	0.26	2.08
		4600	8	0.33	2.64
		5000	8	0.41	3.28
12	Rest day	5000	24	0.41	9.84
13	Load carry to camp 2 at	5000	16	0.41	6.56
	5840m and return	5400	8	0.51	4.08
14	Move to camp 2	5000	8	0.41	3.28
		5400	8	0.51	4.08
		5840	8	0.59	4.72
15	Rest day	5840	24	0.59	14.16
16-18	Summit day attempts	5840	57	0.59	33.63
	(summit 6960m)	6400	14	0.77	10.78
		6960	1	0.99	0.99
19	Return to Plaza	5840	8	0.59	4.72
	Argentinas	5000	6	0.41	2.46
		4203	10	0.26	2.60
20	Rest day	4203	24	0.26	6.24
21	Trek to Pampa de Lenas	4203	8	0.26	2.08
		3500	6	0.19	1.14
		2867	10	0.13	1.30

22	Trek out and return to	2867	8	0.13	1.04
	Mendoza	2720	6	0.12	0.72
		760	10	0.05	0.50
23-24	Return international	760	12	0.05	0.60
	flights	0	19	0.05	0.95
Total cosmic dose whilst at ground level:					160.80

Table A3: Cosmic radiation dose estimate during flights for an ascent of Carstensz Pyramid

Flight	Duration of flight	Estimated dose (microSv)
Glasgow to Manchester	1 hour 5 minutes	1.9
Manchester to Abu Dhabi	7 hours 10 minutes	27.2
Abu Dhabi to Jakarta	8 hours 30 minutes	18.7
Jakarta to Bali	1 hour 45 minutes	2.3
Bali to Timika	4 hours 35 minutes	8.5
Timika to Ilaga	1 hour	0.6
Ilaga to Timika	1 hour	0.6
Timika to Sulawesi	4 hours 5 minutes	7.2
Sulawesi to Jakarta	2 hours 15 minutes	3.4
Jakarta to Abu Dhabi	8 hours 30 minutes	18.7
Abu Dhabi to Manchester	8 hours 5 minutes	34.2
Manchester to Glasgow	1 hour 5 minutes	1.9
Totals	49 hours 5 minutes	125.2

Table A4: Cosmic radiation dose estimate whilst on the ground during a Carste	ensz Pyramid expedition

Day	Description	Approximate	Estimated time	Dose rate	Dose estimate
		Altitude (m)	at altitude	estimate	(microSv)
			(hours)	(microSv/hr)	
1-2	International flights to	0	7.25	0.05	0.4
	Jakarta	0	14	0.03	0.4
3	Flights from Jakarta to	0	8	0.03	0.2
	Ilaga in Papua	2280	8.75	0.08	0.7
4	Trek from Ilaga to Pinapa	2280	8	0.08	0.6
		2400	16	0.09	1.4
5	Trek from Pinapa to	2400	12	0.09	1.1
	Camp 1	3280	12	0.14	1.7
6	Camp 1 to Camp 2	3280	8	0.14	1.1
		3600	8	0.17	1.4
		3760	8	0.18	1.4
7	Camp 2 to Camp 3	3760	8	0.18	1.4
		3800	16	0.18	2.9
8	Camp 3 to Camp 4	3800	24	0.18	4.3
9	Camp 4 to Camp 5	3800	24	0.18	4.3
10	Camp 5 to Camp 6	3800	24	0.18	4.3
11	Camp 6 to Carstensz	3800	8	0.18	1.4
	Base Camp	4100	8	0.22	1.8
		4280	8	0.23	1.8
12	Ascent of Carstensz	4280	15	0.23	3.5
	Pyramid	4600	8	0.27	2.2
		4884	1	0.34	0.3
13	Rest day	4280	24	0.23	5.5
14	Return to Camp 6	4280	8	0.23	1.8
		4100	8	0.22	1.8
		3800	8	0.18	1.4
15	Return to Camp 4	3800	24	0.18	4.3

16	Return to Camp 2	3800	24	0.18	4.3
17	Return to Camp 1	3800	8	0.18	1.4
		3600	8	0.17	1.4
		3280	8	0.14	1.1
18	Return to Ilaga	3280	8	0.14	1.1
		2700	8	0.11	0.9
		2280	8	0.08	0.6
19	Rest day	2280	24	0.08	1.9
20	Fly Ilaga to Jakarta	2280	8	0.08	0.6
		0	8.67	0.03	0.3
21-22	Return international	0	16	0.03	0.5
	flights	0	16.33	0.05	0.8
	Total cosmic dose whilst at ground level:				

Table A5: Cosmic radiation	dose estimate during fli	ights for an ascent of Elbrus
rucie ruci cosmie ruciation	abbe estimate daring in	gines for an ascent of Bioras

Flight	Duration of flight	Estimated dose (microSv)
Glasgow to Amsterdam	1 hour 45 minutes	5.5
Amsterdam to Moscow	3 hours 10 minutes	16.4
Moscow to Mineralnye Vodi	2 hours 10 minutes	6.6
Mineralnye Vodi to Moscow	2 hours 10 minutes	6.6
Moscow to Amsterdam	3 hours 35 minutes	19.1
Amsterdam to Glasgow	1 hour 45 minutes	5.5
Totals	14 hours 35 minutes	59.7

Day	Description	Approximate	Estimated time	Dose rate	Dose estimate
		Altitude (m)	at altitude	estimate	(microSv)
			(hours)	(microSv/hr)	
1	International flights to	0	8.5	0.05	0.4
	Moscow	200	8.5	0.04	0.3
2	Fly to Mineralnye Vodi	200	8	0.04	0.3
	and travel to Upper	1250	4	0.07	0.3
	Baskan Valley	2130	10	0.11	1.1
3	Acclimatisation walk	2130	8	0.11	0.9
		2700	8	0.15	1.2
		2130	8	0.11	0.9
4	Load carry to camp	2130	8	0.11	0.9
	below VCSPS pass	2700	8	0.15	1.2
		2130	8	0.11	0.9
5	Move up to camp below	2130	8	0.11	0.9
	VCSPS pass	2700	8	0.15	1.2
		3200	8	0.20	1.6
6	Ascent of Andirchi	3200	15	0.20	3.0
	(3800m) via VCSPS pass	3500	8	0.23	1.8
		3800	1	0.26	0.3
7	Ascent of Krumrichi	3200	8	0.20	1.6
	(4200m) via VCSPS pass	3700	8	0.25	2.0
	then back to valley	4200	1	0.33	0.3
		2130	7	0.11	0.8
8	Ascend to the Barrels	2130	8	0.11	0.9
	(3800m) and walk to	3800	2	0.26	0.5
	Prijutt hut (4200m).	4000	4	0.30	1.2
	Overnight at the Barrels.	4200	1	0.33	0.3
		3800	9	0.26	2.3

9	Ascend to Pastukov	3800	8	0.26	2.1
	Rocks (4850m) and stay	4400	7	0.37	2.6
	at Prijutt hut (4200m)	4850	1	0.46	0.5
		4200	8	0.33	2.6
10	Rest day	4200	24	0.33	7.9
11	Potential summit day	4200	6	0.33	2.0
		4900	13	0.46	6.0
		5642	1	0.71	0.7
		4200	4	0.33	1.3
12	Rest day (or summit day)	4200	24	0.33	7.9
13	Return journey to	4200	6	0.33	2.0
	Moscow	3000	2	0.17	0.3
		2130	2	0.11	0.2
		1250	4	0.07	0.3
		200	6	0.04	0.2
14	Return international	200	8	0.04	0.3
	flights	0	10.67	0.05	0.5
	Total cosmic dose whilst at ground level: 64.6				

Table A7: Cosmic radiation dose estimate during flights for an ascent of Everest

Flight	Duration of flight	Estimated dose (microSv)
Glasgow to Dubai	7 hours 20 minutes	29.6
Dubai to Delhi	3 hours 5 minutes	6.5
Delhi to Kathmandu	1 hour 40 minutes	2.3
Kathmandu to Delhi	1 hour 40 minutes	2.3
Delhi to Dubai	3 hours 45 minutes	8.3
Dubai to Glasgow	8 hours	36.4
Tota	lls 25 hours 30 minutes	85.4

Table A8: Cosmic radiation	dose estimate whilst	on the ground	during an Evere	st expedition

Day	Description	Approximate	Estimated time	Dose rate	Dose estimate
		Altitude (m)	at altitude	estimate	(microSv)
			(hours)	(microSv/hr)	
1-2	International flights to	0	16	0.05	0.8
	Kathmandu	240	4	0.03	0.1
		1400	16	0.05	0.8
3-4	Final preparations, enter	1400	24	0.05	1.2
	Tibet and overnight in	1750	8	0.07	0.6
	Zangmu	2350	16	0.09	1.4
5	Drive to Nylam (4000m)	2350	10	0.09	0.9
		4000	14	0.21	2.9
6-7	Acclimatisation walks	4000	34	0.21	7.1
	up to 4800m	4400	12	0.26	3.1
		4800	2	0.33	0.7
8	Drive to Tingri (4600m)	4000	10	0.21	2.1
		4600	14	0.29	4.1
9-10	Acclimatisation walks up	4600	34	0.29	9.9
	to 5200m	4900	12	0.35	4.2
		5200	2	0.41	0.8
11	Drive to Everest Base	4600	10	0.29	2.9
	Camp (north side)	5200	14	0.41	5.7
12-16	Everest Base Camp –	5200	75	0.41	30.8
	acclimatisation walks up	5600	40	0.49	19.6
	to 6000m	6000	5	0.57	2.9

1 -	· · · · · · · · · · · · · · · · · · ·	73 00	0	0.44	
17	Walk to intermediate	5200	8	0.41	3.3
	camp (5700m)	5450	8	0.46	3.7
10		5700	8	0.51	4.1
18	Walk to Advanced Base	5700	8	0.51	4.1
	camp (6400m)	6100	8	0.60	4.8
10.00	D (1	6400	8	0.68	5.4
19-20	Rest days	6400	48	0.68	32.6
21	Ascend to north col	6400	10	0.68	6.8
	(7010m) and return	6700 7010	12	0.77	9.2
22	Dest des	7010	2	0.87	1.7
22 23	Rest day	6400	24	0.68	16.3
23	Ascend to north col and	6400 6700	8 8	0.68 0.77	5.4 6.2
	spend night there	6700 7010	8 8		
24	Descender Advenue 1	7010		0.87	7.0
24	Descend to Advanced	7010 6700	8 4	0.87 0.77	7.0 3.1
	Base Camp	6400	4 12	0.68	8.2
25-26	Dest days	6400	48	0.68	<u> </u>
23-20	Rest days Ascend to north col and	6400	48		52.0
27		6700	8 8	0.68 0.77	5.4 6.2
	stay there	7010	8 8	0.87	0.2 7.0
28-29	Dest days	7010	48	0.87	
28-29 30	Rest days Ascend to Camp 2a	7010	48	0.87	41.8 8.7
50	(7500m) and descend to	7300	10	0.87	8.7 11.8
	north col	7500	2	1.06	2.1
31	Rest day	7010	24	0.87	20.9
31	Ascend to Camp 2a and	7010	8	0.87	7.0
52	spend night there	7300	8 8	0.87	7.0
	spend linght there	7500	8	1.06	8.5
33	Ascend to Camp 2b	7500	14	1.06	14.8
55	(7800m) and return to	7650	8	1.00	8.7
	Camp 2a	7800	2	1.17	2.3
34	Rest day	7500	24	1.06	25.4
35	Ascend to Camp 2b and	7500	8	1.06	8.5
55	spend night there	7650	8	1.00	8.7
	spend linght there	7800	8	1.17	9.4
36	Descend to north col	7800	8	1.17	9.4
50		7400	8	1.02	8.2
		7010	8	0.87	7.0
37	Descend to Advanced	7010	8	0.87	7.0
-	Base Camp	6700	4	0.77	3.1
	I	6400	12	0.68	8.2
38	Descend to Base Camp	6400	8	0.68	5.4
	· · · · r	5800	8	0.52	4.2
		5200	8	0.41	3.3
39-43	Rest days	5200	120	0.41	49.2
44	Re-ascend to Advanced	5200	8	0.41	3.3
	Base camp	5800	8	0.52	4.2
	*	6400	8	0.68	5.4
45-46	Rest days	6400	48	0.68	32.6
47	Re-ascend to North Col	6400	8	0.68	5.4
	and stay there	6700	8	0.77	6.2
	÷	7010	8	0.87	7.0
40	Ascend to Camp 2a and	7010	8	0.87	7.0
48	Ascent to Camp Za and	/010	0	0.07	

		7500	8	1.06	8.5
49	Ascend to Camp 2b and	7500	8	1.06	8.5
	spend night there	7650	8	1.09	8.7
		7800	8	1.17	9.4
50	Ascend to Camp 3	7800	8	1.17	9.4
	(8200m)	8000	8	1.25	10.0
		8200	8	1.34	10.7
51	Ascend to Everest	8200	7	1.34	9.4
	summit and return to	8500	16	1.47	23.5
	Camp 3	8848	1	1.62	1.6
52	Descend to north col	8200	6	1.34	8.0
		7600	6	1.09	6.5
		7010	12	0.87	10.4
53	Descend to Advanced	7010	8	0.87	7.0
	Base camp	6700	4	0.77	3.1
	-	6400	12	0.68	8.2
54-63	Contingency / weather	6400	240	0.68	163.2
	days spent at Advanced				
	Base Camp during				
	expedition				
64	Clear Advanced Base	6400	24	0.68	16.3
	Camp				
65	Descend to Base Camp	6400	8	0.68	5.4
		5800	8	0.52	4.2
		5200	8	0.41	3.3
66	Clear Base Camp	5200	24	0.41	9.8
67	Drive to Nylam (4000m)	5200	10	0.41	4.1
		4000	14	0.21	2.9
68	Drive to Kathmandu	4000	8	0.21	1.7
		2700	8	0.11	0.9
		1400	8	0.05	0.4
69-70	Rest day in Kathmandu	1400	48	0.05	2.4
71-72	International flights from	1400	16	0.05	0.8
	Kathmandu	240	3	0.03	0.1
		0	16	0.05	0.8
		Total c	osmic dose whilst	at ground level:	1011.9

Table A9: Cosmic radiation dose estimate during flights for an ascent of Denali

Flight	Duration of flight	Estimated dose (microSv)
Glasgow to Paris	1 hour 45 minutes	5.3
Paris to Seattle	10 hours 25 minutes	73.8
Seattle to Anchorage	3 hours 40 minutes	17.4
Talkeetna to Kahiltna glacier	45 minutes	0.9
Kahiltna glacier to Talkeetna	45 minutes	0.9
Anchorage to Seattle	3 hours 40 minutes	17.4
Seattle to Paris	9 hours 50 minutes	68.7
Paris to Glasgow	1 hour 45 minutes	5.3
Totals	32 hours 35 minutes	189.7

2Equipment3Drive to T fly to Kah (2134m)4Load carr and return5Move up (Base of S6Load carr (Base of S6Load carr (Base of S6Load carr (Base of N and return7Move up8Rest day9Laud hau Corner (4 return to C10Move up 4369m11Active res cache at 412Load carr and cache return to C13Rest day14Move up 5243m.15-16Rest days17Summit a Glacier20Descend to Glacier	ion	Approximate	Estimated time	Dose rate	Dose estimate
2Equipment3Drive to T fly to Kah (2134m)4Load carr and return5Move up (Base of S6Load carr (Base of S6Load carr (Base of S6Load carr (Base of N and return7Move up8Rest day9Laud hau Corner (4 return to C10Move up 4369m11Active res cache at 412Load carr and cache return to C13Rest day14Move up 5243m.15-16Rest days17Summit a Glacier20Descend to Glacier		Altitude (m)	at altitude	estimate	(microSv)
2Equipment3Drive to T fly to Kah (2134m)4Load carr and return5Move up (Base of S6Load carr (Base of S6Load carr (Base of S6Load carr (Base of N and return7Move up8Rest day9Laud hau Corner (4 return to C10Move up 4369m11Active res cache at 412Load carr and cache return to C13Rest day14Move up 5243m.15-16Rest days17Summit a Glacier20Descend to Glacier			(hours)	(microSv/hr)	
3Drive to T fly to Kal (2134m)4Load carr and return5Move up (Base of S6Load carr (Base of S6Load carr (Base of S6Load carr (Base of I and return7Move up8Rest day9Laud hau Corner (4 return to 010Move up 4369m11Active res cache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a Glacier20Descend to Glacier	o Anchorage	0	8.5	0.05	0.4
fly to Kah (2134m)4Load carr and return5Move up (Base of S6Load carr (Base of S6Load carr (Base of N and return7Move up8Rest day9Laud hau Corner (4 return to 010Move up 4369m11Active res cache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a days at 5220Descend to Glacier	ent checks	0	24	0.05	1.2
(2134m)4Load carr and return5Move up (Base of S6Load carr (Base of S6Load carr (Base of N and return7Move up8Rest day9Laud hau Corner (4 return to 010Move up 4369m11Active res cache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a days at 5220Descend to Glacier	Talkeetna and	0	8	0.05	0.4
4Load carr and return5Move up (Base of S6Load carr (Base of S6Load carr (Base of N and return7Move up8Rest day9Laud hau Corner (4 return to 010Move up 4369m11Active res cache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a days at 5220Descend to Glacier	hiltna Glacier	110	7	0.05	0.4
and return5Move up (Base of S6Load carr (Base of N and return7Move up8Rest day9Laud hau Corner (4 return to 010Move up 4369m11Active res cache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a days at 5220Descend to Glacier		2134	8	0.13	1.0
and return5Move up (Base of S6Load carr (Base of N and return7Move up8Rest day9Laud hau Corner (4 return to 010Move up 4369m11Active res cache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a days at 5220Descend to Glacier	rry to Camp 1	2134	12	0.13	1.6
(Base of S6Load carr (Base of N and return7Move up8Rest day9Laud hau Corner (4 return to 010Move up 4369m11Active res cache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier	rn to Kahiltna	2368	12	0.14	1.7
(Base of S6Load carr (Base of N and return7Move up8Rest day9Laud hau Corner (4 return to 010Move up 4369m11Active res cache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier	to Camp 1	2134	8	0.13	1.0
6Load carr (Base of M and return7Move up8Rest day9Laud hau Corner (4 return to 010Move up 4369m11Active rescache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier		2368	16	0.14	2.2
(Base of I and return7Move up8Rest day9Laud hau Corner (4 return to 010Move up 4369m11Active res cache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a days at 5220Descend to Glacier	rry to Camp 2	2368	15	0.14	2.1
and return7Move up8Rest day9Laud hauCorner (4 return to 010Move up 4369m11Active res cache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Contingen days at 5220Descend to Glacier	Motorcycle hill)	2850	8	0.19	1.5
 7 Move up 8 Rest day 9 Laud hau 9 Corner (4 return to 0 10 Move up 4369m 11 Active rescache at 4 12 Load carr and cache return to 0 13 Rest day 14 Move up 5243m. 15-16 Rest days 17 Summit a 18-19 Contingen days at 52 20 Descend to Glacier 	rn to Camp 1	3353	1	0.28	0.3
8Rest day9Laud hau Corner (4 return to 010Move up 4369m11Active rescache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier	<u>^</u>	2368	8	0.14	1.1
9Laud hau Corner (4 return to 010Move up 4369m11Active rescache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier	to cump -	2850	8	0.19	1.5
9Laud hau Corner (4 return to 010Move up 4369m11Active rescache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier		3353	8	0.28	2.2
9Laud hau Corner (4 return to 010Move up 4369m11Active rescache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier		3353	24	0.28	6.7
Corner (4 return to 0 10 Move up 4369m 11 Active res cache at 4 12 Load carr and cache return to 0 13 Rest day 14 Move up 5243m. 15-16 Rest days 17 Summit a 18-19 Continger days at 52 20 Descend to Glacier	ul around Windy	3353	15	0.28	4.2
return to 010Move up 4369m11Active rescache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier		3700	8	0.20	2.5
10Move up 4369m11Active rescache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier		4054	1	0.40	0.4
4369m11Active rescache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Contingen days at 5220Descend to Glacier		3353	8	0.40	2.2
11Active rescache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier	ito Camp 5 at	3850	8	0.28	2.2
cache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier		4369	8	0.30	3.8
cache at 412Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier	ast day to collect	4369	20	0.48	9.6
12Load carr and cache return to 013Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier	•	4054	4	0.48	1.6
and cache return to 0 13 Rest day 14 Move up 5243m. 15-16 Rest days 17 Summit a 18-19 Continger days at 52 20 Descend to Glacier		4369	15	0.40	6.0
return to 0 13 Rest day 14 Move up 5243m. 15-16 Rest days 17 Summit a 18-19 Contingen days at 52 20 Descend to Glacier		4600			4.2
13Rest day14Move up 5243m.15-16Rest days17Summit a18-19Continger days at 5220Descend t21Descend tGlacier		4000	8	0.53 0.65	4.2 0.7
14Move up 5243m.15-16Rest days 1717Summit a18-19Continger days at 5220Descend to Glacier		4369	24		
15-16 Rest days 17 Summit a 18-19 Continger days at 52 20 Descend t 21 Descend t Glacier				0.40	9.6
15-16Rest days17Summit a18-19Continger days at 5220Descend to Glacier	to high camp at	4369	8	0.40	3.2
 17 Summit a 18-19 Contingendays at 52 20 Descend to 21 Descend to Glacier 		4800	8	0.59	4.7
 17 Summit a 18-19 Continger days at 52 20 Descend to Glacier 	. 52.12	5243	8	0.78	6.2
18-19Continger days at 5220Descend t21Descend tGlacier		5243	48	0.78	37.4
days at 5220Descend t21Descend tGlacier	attempt	5243	7	0.78	5.5
days at 5220Descend t21Descend tGlacier		5700	14	1.00	14.0
days at 5220Descend t21Descend tGlacier		6194	1	1.25	1.3
21 Descend t Glacier	ency summit 5243m	5243	48	0.78	37.4
Glacier	to Camp 3	5243	8	0.78	6.2
Glacier	-	4800	8	0.59	4.7
Glacier		4369	8	0.40	3.2
	to Kahiltna	4369	8	0.40	3.2
22 Return to		3200	8	0.25	2.0
22 Return to		2134	8	0.13	1.0
	o Anchorage	2134	8	0.13	1.0
	U	110	7	0.05	0.4
		0	8	0.05	0.4
	ency day for	0	24	0.05	1.2
24-25 Return int	nternational	0	32.75	0.05	1.6
flights			osmic dose whilst		

Table A10: Cosmic radiation dose estimate whilst on the ground during a Denali expedition

Table A11: Cosmic radiation dose estimate during flights for an ascent of Kilimanjaro

Flight	Duration of flight	Estimated dose (microSv)
Glasgow to Amsterdam	1 hour 45 minutes	5.5
Amsterdam to Kilimanjaro	8 hours 25 minutes	24.2
Kilimanjaro to Amsterdam	8 hours 35 minutes	24.2
Amsterdam to Glasgow	1 hour 45 minutes	5.5
Totals	20 hours 30 minutes	59.4

Table A12: Cosmic radiation dose estimate whilst on the ground during a Kilimanjaro expedition

Day	Description	Approximate	Estimated time	Dose rate	Dose estimate
	-	Altitude (m)	at altitude	estimate	(microSv)
			(hours)	(microSv/hr)	
1	International flights to	0	6	0.05	0.3
	Kilimanjaro airport and	891	7.75	0.04	0.3
	stay in Moshi				
2	Commence	891	8	0.04	0.3
	acclimatisation ascent of	2000	8	0.07	0.6
	Mount Meru	2515	8	0.10	0.8
3	Miriakamba Hut to	2515	8	0.10	0.8
	Saddle Hut (3570m)	3100	8	0.13	1.0
		3570	8	0.17	1.4
4	Saddle Hut to Socialist	3570	13	0.17	2.2
	Peak (4566m) to	4566	1	0.27	0.3
	Miriakamba Hut	2515	8	0.10	0.8
5	Miriakamba Hut to Moshi	2515	8	0.10	0.8
		2000	8	0.07	0.6
		891	8	0.04	0.3
6	Ascent of Kilimanjaro –	891	8	0.04	0.3
	Machame Gate to	2500	8	0.10	0.8
	Machame Camp	3000	8	0.12	1.0
7	Machame Camp to Shira	3000	8	0.12	1.0
	Camp	3400	8	0.14	1.1
		3840	8	0.19	1.5
8	Shira Hut to Barranco	3840	8	0.19	1.5
	Hut	4200	7	0.23	1.6
		4600	1	0.27	0.3
		3950	8	0.20	1.6
9	Barranco Hut to Barafu	3950	8	0.20	1.6
	Hut	4250	8	0.23	1.8
		4600	8	0.27	2.2
10	To summit of	4600	2	0.27	0.5
	Kilimanjaro and out to	5250	8	0.38	3.0
	Mweka Camp	5895	1	0.52	0.5
		4600	6	0.27	1.6
		3100	7	0.13	0.9
11	Mewka Camp to Moshi	3100	8	0.13	1.0
		2000	8	0.07	0.6
		891	8	0.04	0.3
12	Rest day	891	24	0.04	1.0
13	Return international	891	7.67	0.04	0.3
	flights	0	6	0.05	0.3
		Total c	osmic dose whilst	at ground level:	36.8

Table A13: Cosmic radiation dose estimate during flights for an ascent of Mount Vinson

Flight	Duration of flight	Estimated dose (microSv)
Glasgow to Paris	1 hour 45 minutes	5.3
Paris to Santiago	14 hours 15 minutes	43.8
Santiago to Punta Arenas	3 hours 30 minutes	12.8
Punta Arenas to Union Glacier	4 hours 30 minutes	23.0
Union Glacier to Vinson Base	45 minutes	0.9
Camp		
Vinson Base Camp to Union	45 minutes	0.9
Glacier		
Union Glacier to Punta Arenas	4 hours 30 minutes	23.0
Punta Arenas to Santiago	3 hours 30 minutes	12.8
Santiago to Paris	13 hours 30 minutes	43.0
Paris to Glasgow	1 hour 45 minutes	5.3
Totals	48 hours 45 minutes	170.8

Table A14: Cosmic radiation dose estimate whilst on the ground during a Mount Vinson expedition

Day	Description	Approximate	Estimated time	Dose rate	Dose estimate
		Altitude (m)	at altitude	estimate	(microSv)
			(hours)	(microSv/hr)	
1-2	International flights to Punta Arenas	0	28.5	0.05	1.4
3	Preparations & briefings in Punta Arenas	0	24	0.05	1.2
4	Flight to Union Glacier	0	9.5	0.05	0.5
	-	750	10	0.06	0.6
5	Flight to Vinson Base	750	12	0.06	0.7
	Camp	2100	11.15	0.11	1.2
6	Ascent of acclimatisation	2100	16	0.11	1.8
	peak (2800m)	2450	7	0.15	1.1
		2800	1	0.18	0.2
7	Load carry to turn in the	2100	16	0.11	1.8
	glacier	2350	7	0.14	1.0
		2600	1	0.16	0.2
8	Move to Camp 1 at	2100	8	0.11	0.9
	2770m	2450	8	0.15	1.2
		2770	8	0.18	1.4
9	Load carry to High Camp	2770	14	0.18	2.5
		3300	9	0.26	2.3
		3773	1	0.33	0.3
10	Move up to High Camp	2770	8	0.18	1.4
		3300	8	0.26	2.1
		3773	8	0.33	2.6
11	Rest day at High Camp	3773	24	0.33	7.9
12	Mount Vinson summit	3773	14	0.33	4.6
	attempt	4350	9	0.47	4.2
		4897	1	0.66	0.7
13-14	Contingency days for summit bid	3773	48	0.33	15.8
15	Return to Vinson base	3773	8	0.33	2.6
	camp	2900	10	0.19	1.9
	-	2100	6	0.11	0.7
16	Fly to Union Glacier	2100	11.15	0.11	1.2
		750	12	0.06	0.7

17	Fly to Punta Arenas	750	10	0.06	0.6
		0	9.5	0.05	0.5
18-19	Return international flights	0	29.25	0.05	1.5
	69.4				