

NATURAL RADIOACTIVITY OF VOLCANIC TUFF STONES WITH DIFFERENT COLORS USED AS **COMMONLY BUILDING MATERIALS**

13th International Congress of the International Radiation Protection Association

13-18 May 2012 SECC Gasgow Scotland www.irpal3glasgow.com

Abstract The concentrations of natural radionuclides in 6 different volcanic tuff stones which commonly use as building and decoration material around Cappadocia region, Turkey were determined using gamma ray spectroscopy with an HPGe detector and the chemical name and formula of stones were determined by X-ray diffactometer for powder. Indoor absorbed gamma dose rate in air (Din), radium equivalent activities (Raeg), external hazard index (Hex), internal hazard index (Hn), alpha and gamma index associated with the natural radionuclide are calculated to assess the radiation hazard of the natural radioactivity in the different of volcanic tuff stones.

> **T**1 12

Fig 5. Internal hazard index of the samples

MELTEM DEGERLIER

Nevsehir University Science and Art Faculty **Physics Department**

SAMPLE PREPARATION and MEASUREMENT TECHNIQUES Preparation of stone samples

CAPADOCIA REGION

with Marinelli Beakers

The stone samples were pulverized, dried, homogenized and sieved through 2 mm mesh. The meshed samples were transferred to Marinelli beakers of 1000 ml capacity. The samples were weighed, carefully sealed and stored for more than 30 days to allow secular equilibrium between thorium and radium and their decay products (Mollah et al., 1987)

Canberra S-85 Multi Channel Analyzer with Model 8087 4K ADC

Gamma spectroscopic measurements were performed using a coaxial HPGe detector having a 16% relative efficiency. A detection system containing a Canberra Model 202 Amplifier and a Canberra S-85 Multi Channel Analyzer with Model 8087 4K ADC was used for the measurements. The detector was shielded in a 10 cm thick lead well, internally lined with 2 mm thick copper and 2 mm thick cadmium foils. The overall detector resolution (FWHM) ven, merinary merinary merinary merinary copper and 2 mm commons merinary me Merinary merinar 1000 ml Marinelli beaker covering the energy range from 80 to 2500 keV. The counting time for each sample, as well as for background was 50,000 s.

Material	Stone	Stone	Ra-226	Th-232	K-40	Cs-137
	Colors	Compound	(Bq/kg)	(Bq/kg)	(Bq/kg)	(Bq/kg)
		Name				
T1 Yellow		Albite high	64,5 ±1,6	96,0 ±2,3	1033,0 ±29,0	<1,1
		Tridymite				
T2	Dark Gray	Labradorite	42,4 ±0,8	38,8 ±3,6	747,4 ±18,6	<0,2
Т3	Light Gray	Andesine	50,0 ±0,8	61,6 ±0,9	813,0 ±21,0	<0,3
		Tridymite				
T4	Light Beige	Albite	97,2 ±3,0	96,0 ±2,2	1036,0 ±31,5	<0,4
		intermediate				
		Tridymite				
T5	Red	Andesine	32,2 ±0,6	42,0 ±0,7	447,0 ±11,7	<0,3
T6	Gray	Hatrurite	17,8 ±0,7	17,4 ±1,0	228,9 ±8,2	<0,5
		Gypsum				
Mean			50,7	58,6	717,6	
Value						

Table 1. 226Ra, 232Th and 40K activity concentrations of samples as Bq kg-1

Sample	Stone	Stone	D _{in}	E _{in} (mSv)	Ra _{eq} (Bq/kg)	H _{in}	H _{ex}	Gamma	Alpha
code	Colors	Compound	(nGy/h					Index	Index
		Name)						
T1	Yellow	Albite high	31,1	0,15	281,3	0,9	0,8	1,0	0,3
		Tridymite							
T2	Dark Gray	Labradorite	17,6	0,09	155,4	0,5	0,4	0,6	0,2
Т3	Light Gray	Andesine	22,4	0,11	200,7	0,6	0,5	0,8	0,3
		Tridymite							
T4	Light Beige	Albite							
		intermediate	35,1	0,17	314,3	1,1	0,9	1,2	0,5
		Tridymite							
T5	Red	Andesine	14,1	0,07	126,7	0,4	0,3	0,5	0,2
Т6	Gray	Hatrurite	6,8	0,03	60,3	0,2	0,2	0,2	0,1
		Gypsum	İ						
Mear	Mean Value			0,1	379,6	0,6	0,5	0,7	0,3

Table 2. Calculated absorbed dose rates (D_{in}),indoor annual effective doses (E_{in}), Radium equivalent activity (Ra_{eq}), Internal hazard indexes (H_{in}), External hazard indexes (H_{ex}), Alpha and gamma indexes for all samples

CALCUL	ATIONS			
The indoor absorbed gamma dose rate (D_{in}) in air ware evaluated using data and formulae provided by the E Report (EC,1999) Dimensions of the room are 4 m × 5 m 2.8 m. The thickness of tiles on all walls and density of th structures are 3 cm and 2600 kg m ⁻³ , respectively. These coefficients correspond to 0.12 nGy h ⁻¹ per Bq kg ⁻¹ for ²²⁶ Ra, 0,14 nGy h ⁻¹ per Bq kg ⁻¹ for ²³² Th an 0.0096 nGy h ⁻¹ per Bq kg ⁻¹ for ⁴⁰ K (EC,1999, Turha 2012). D _m (nGy h ⁻¹) = 0.12C _{Ra} + 0,14 C _{Th} + 0.0096 C _K Where C _{Ra} , C _{Th} and C _K were the activity concentrations of Ra, Th and K (Bq kg ⁻¹), respectively.	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
Radium equivalent activity (Ra _{en}) is used to assess the hazards associated with materials that contain ²²⁶ Ra, ²³² Th and ⁴⁰ K in Bq kg ⁻¹ . This definition is based on the assumption that 1 Bq kg ⁻¹ of ²³² Ra, 0.7 Bq kg ⁻¹ of ²³² Th and 13 Bq kg ⁻¹ of ⁴⁰ K produce the same gamma dose rate.The Ra _{eq} of the sample in (Bq kg ⁻¹) can be determined using the following equation (UNSCEAR 1982; Huda Al-Sulaiti et al.2011): Ra _{eq} = C _{Ra} + 1.43 x C _{Th} + 0.077 x C _K	Annual external (gamma) index (H_{ex}) due to emitted gamma ray of each samples are given by following equation $H_{ex} = C_{u} / 370 + C_{th} / 259 + C_{k} / 4810 \le 1$ (4) And the internal exposure to ²²² Rn and its radioactive progeny is controlled by the internal hazard index which is given by $H_{in} = C_{u} / 185 + C_{th} / 259 + C_{k} / 4810 \le 1$			
Gamma IndexIn order to assess whether the safety requirements forbuilding materials are being fulfilled, a gamma indexproposed by the European Commission (EC,1999) wasused. It is defined as, $I_{\gamma} = \frac{CRa}{300} + \frac{CTR}{200} + \frac{CIK}{3000}$	ALPHA INDEX The alpha index was calculated by using the following equation, $I_{\alpha} = \frac{CR\alpha}{200}$			
	ESULTS			
be a constrained of the constrai	Fig 2. Indoor Absorbed Gamma Dose Rate due to The Natural Radioactivity for All Samples			
Generation of the second secon	200 200 200 200 200 200 200 200 200 200			
Fig.5. Index Annual Ejective Dose Equivalent for All Samples	Fig 4. Radium equivalent activity (Ra _{eq}) of the samples			

T1 T2 ТЗ T4 Τ5 T6

Fig 6. External hazard index of the samples