

In-patients Receiving ⁹⁰Y-Dotatoc / Dotatate Therapy: Dose Rate Analysis & Advice

Jones GO^[1], Hufton IS and Carroll MJ.

Introduction

[⁹⁰Y]-DOTATOC / DOTATATE Therapy Protocol:

Suitable patients: positive [¹¹¹In]-Octreotide scan followed by [¹¹¹In]-Dotatoc / Dotatate diagnostic images at 4 and 24 hours ± SPECT-CT. If pronounced focal uptake is observed patient may be offered [⁹⁰Y]-

Dotatoc / Dotatate Therapy e.g.

Objective

At present patients receiving ⁹⁰Y-Dotatoc / Dotatate for cancers expressing somatostatin receptors are treated as an inpatient procedure being discharged at around 45 hours post treatment (two nights stay). The patients occupy a single room (a disposable floor lining is laid) and after imaging are free to go home. A sheet outlining instructions (obeyed for the following 3 days post discharge is given to the patient).

A dose rate assessment has been undertaken to determine if this period can be reduced thereby benefiting the patient and freeing up a single occupancy room sooner for use.

Method

Dose rate (DR) measurements were taken on thirteen patients (12M : 1F). Administered activities ranged Between 4860 - 5200 MBq with an average of 5060 MBq (it should be noted that on 3 occasions patients receiving MIBG therapy were located next door, however this was deemed to have little effect on the measurements). Dose rates were recorded at distances of 0.5 and 1.0 m from each patient on right and left hand side at various times up to 48 hours post therapy.

Table 1.0 details averaged measured DR at 1.0 m for various times post therapy and the max-to-min range of values.

Results

Graphs 1.0 and 1.1 show the measured dose rates at 1.0 m from the right and left hand sides respectively as a function of time. Average measured dose rates at 1.0 m (max-to-min ranges) immediately after therapy were 7.2 (20-3) and 8.2 (20-4) for right and left hand sides respectively. At 24 hours dose rates were 1.5 (4-1) and 1.5 (3-1) for right and left hand sides respectively. A single exponential decay model was fitted to the data to give calculated dose rates as a function of time.

Using this model, calculated dose rates were obtained at 6 hour intervals between t = 0 and t = 48 hours (refer to Table 1.1).

		Range Max-Min (µSv.hr ⁻¹)		Т			· 1		
RHS () () Sv.hr ⁻¹)	LHS (μSv.hr¹)			20 -	•	ExpDecay y = 0.05 + 8	.03e ^{-(x/11.3}	3)	
								■ jejr ● aw ◆ adr + ds → dmr ds	/r ▲ pcr ▼ jejr2 ⊮r × pbr ★ bcr .sr2 □ jsr O tkr
7.2 20 - 3	8.2	20 – 4		IH. 12 –				△ mfr — ExpDecay1	fit of Data1_jejr
6.4 15 - 2	6.3	15 – 1		DR (ب				
				asure	♥ ♥ ₩ 0+				
1.6 3 - 1	1.5	3 – 1	EC.	We Note	- - 				
24 + 1.5 4 - 1	1.5	3 - 1	-1	-5	0 5	10 15 20 25	30	35	40 45
	NH3 Sv.hr ⁻¹) 7.2 20 - 3 6.4 15 - 2 1.6 3 - 1 1.5 4 - 1	Kind Lind Sv.hr ⁻¹) (μSv.hr ⁻¹) 7.2 20 - 3 8.2 6.4 15 - 2 6.3 1.6 3 - 1 1.5 1.5 4 - 1 1.5	Kind Sv.hr ⁻¹)Lind (μ Sv.hr ⁻¹)7.220 - 38.220 - 46.415 - 26.315 - 11.63 - 11.53 - 11.54 - 11.53 - 1	KHS LHS LHS Sv.hr ⁻¹) $(\mu Sv.hr^{-1})$ (7.2 20 - 3 8.2 20 - 4 6.4 15 - 2 6.3 15 - 1 1.6 3 - 1 1.5 3 - 1 1.5 4 - 1 1.5 3 - 1	NHS LHS 20 Sv.hr'1) (μ Sv.hr'1) (μ Sv.hr'1) (μ Sv.hr'1) 7.2 20 - 3 8.2 20 - 4 6.4 15 - 2 6.3 15 - 1 1.6 3 - 1 1.5 3 - 1 1.5 4 - 1 1.5 3 - 1	NHS LHS $20 - 3$ Sv.hr'1) $(\mu Sv.hr'1)$ $20 - 4$ 7.2 20 - 3 8.2 20 - 4 6.4 15 - 2 6.3 15 - 1 1.6 3 - 1 1.5 3 - 1 1.5 4 - 1 1.5 3 - 1	Kins Lins Lins <thlins< th=""> Lins Lins</thlins<>	Kris Lris Lris <thlris< th=""> Lris Lris</thlris<>	Kris Lris Lris <thlris< th=""> Lris Lris</thlris<>

 Table 1.0:
 Measured average dose rates & max-min ranges

 as a function of time.

Fig 1.0: Measured DR as a function of time at 1.0 m RHS.

ime Post Therapy	Calculated DR RHS	Calculated DR LHS	Average Calculated DR	
(hours)	(µSv.hr¹)	(µSv.hr⁻¹)	(µSv.hr¹)	
0	0 8.1		9.2	
6	4.8	6.4	5.6	
12	2.8	3.8	3.3 2.0 1.1 ≈1 ≈1	
18	1.7	2.2		
24	1.0	1.1		
28	≈1	≈1		
30	≈1	≈1		
36	36 ≈1		≈1 ≈1	
42 ≈1		≈1		
45 ≈1		≈1	≈1	
48	≈1	≈1	≈1	

Conclusions

The conclusion is that at 1.0 m, both the mathematical calculation of a single exponential fit and the actual measured data indicate dose rates at levels at around 4 µSv.hr⁻¹ worst case and typically 1.5 µSv.hr⁻¹ or less on average at 24+ hours (By examining the data at 0.5 m by the same techniques dose rates at levels also around 4 µSv.hr⁻¹ worst case and typically 1.8 μSv.hr⁻¹ or less on average at 24+ hours).

With these dose rates, it is deemed acceptable for patients to leave after a minimum of 24 hours along with a amended patient instruction sheet (obeying the instructions for 4 days post discharge). A patient specific risk assessment can be carried out when an individual given "cause for concern" arises (e.g. Incontinence etc.).

Detter Together

[1] Email: g.o.jones@mail.com