Evaluation of patient skin dose in Interventional Radiology with use of radiochromic film

M. Labattu1, J. Guersen1, L. Cassagnes1, F. Magnier2, V. Chassin2, D. Donnarieix2, L. Boyer1, P. Chabrot1
1Centre Hospitalier Universitaire, Service de radiologie vasculaire, Clermont-Ferrand, France
2Centre de Lutte contre le Cancer Jean Perrin, Clermont-Ferrand, France

1-Background

- The risk of deterministic skin effects following procedures using X-rays appears for absorbed skin-dose about 2-3 Grays at one time (threshold dose of transitional erythema apparition).
- In peripheral interventional vascular radiology, this risk can’t be avoided for technically difficult and long procedures, involving profile or oblique incidences with obese patients (abdomino-pelvic region). In neuroradiology, it is not uncommon to deliver doses about 5 Gy for procedures like intracranial aneurysm embolization or arterial-vein deformity.
- The Authority of Safety Nuclear (ASN) demanded a special medical following when patient maximum skin dose exceeded 3Gy (deterministic effects threshold), but facilities just gave airkerma (AK) and kerma surface product (KSP) which are just indicators.
- To detect in advance the risk of having deterministic skin effect, it is necessary to know the absorbed skin dose.
- Radiochromic films XR-RV3 have been chosen to make the dosimetric study of the patient skin dose.

2-Objectives

- Carry out dosimetric measures to better known dose delivered to skin patients in interventional radiology.
- We have targeted on these points:
 - Films calibration and reading protocols
 - Assess the reliability of the measured doses with the films by comparing results obtained with thermoluminescent dosimeters (TLDs)
 - Check the possibility to use radiochromic films in routine

3-Method

- We have studied physical characteristics:
 - Temporal evolution
 - Energy dependance
 - Calibration with 2 different voltage: 81 et 117kVp with interventional facility.
- Films have been read with a flatbed scanner Epson 10000XL and analysed with ImageJ.
- We have placed films during several procedures: 37 interventional vascular radiology procedures and 21 neuroradiology procedures.

4-Results and discussion

- Darkening film evolution during 24 hours after irradiation

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>0h</th>
<th>24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.35%</td>
<td>0.35%</td>
</tr>
<tr>
<td>0.1</td>
<td>0.40%</td>
<td>0.35%</td>
</tr>
<tr>
<td>0.5</td>
<td>0.35%</td>
<td>0.31%</td>
</tr>
</tbody>
</table>

The temporal evolution is negligible, but to be reproducible method we decided to read films 24h after irradiation.

- Comparison of two different energies calibration

The average space between these two calibration curve is about 1,44% with a maximum of 3,6%. Films are a bit dependant of energies between 81 and 117kVp.

5-Conclusion

- Data given from the facilities are not reliable enough to know accurately the dose delivered to the patient skin. A simple method to know this dose, to plan appropriate medical follow up, is necessary.
- This study confirm the need of a routine evaluation of patient skin doses during interventional radiology procedures which could generate doses higher than the threshold of 2-3Gy.
- Usual parameters (KSP and AK) just allowed to identify 4 patients/58 patients which have received dose > 3Gy whereas films detected 12 patients (three times more) needed a specific medical follow up.
- Radiochromic films possessed this advantages:
 - They allowed the measure of the maximal skin dose taking into account field overlapping
 - They gave a picture of the dose distribution
 - They enabled to know the dose at the end of the procedure (flatbed scanner and simple analysis)
 - Utilization an manipulation were easy in routine (insensitive to visible light during short time)
- Identification of patients who have received high doses would allow radiologist to inform them about potential effects they could have and organized an appropriate medical follow up.