1. Introduction.
Linear Non-Threshold Concept (LNT) of harmful stochastic radiative effects (carcinogenic and genetic) occur frequency as a function of dose, and the risk of stochastic effects is monotonically and irreversibly increased with the intensity of exposure irrespectively of the time span of exposure. The current scepticism of the LNT concept is caused by unreasonable toughening of requirements and in creation of a complex multistage structure of radiation protection system. That made the society a hostage of single-sided theoretical conceptions, which are far away from real practice of nuclear energy. At the same time recently numerous data based on extensive radio-biological, epidemiological and statistical research have been accumulated, and these data challenge the validity of the so-called deterministic or what is more probable the concept of dose constraints suggested by ICRP for the situations of planned radiation exposure, according to which the dose constraints should be established on the basis of statistical risk assessment, and those perceptions that strict dose limits with values below 1 mSv per year (0.3, 0.1 or even 0.01 mSv/a). Unfortunately these values of annual doses sharply decrease into regulatory documents though these doses are substantially lower than even fluctuations of natural radiation background.

2. Objectives.
At the initial stage of the use of atomic energy, up to the 1960s, the community of scientists and specialists on radiation protection performed enormous work on validating and ensuring the highest standards for radiation safety for the general public and for workers. The work of ICRP, UNSCEAR, IAEA, and national regulatory organizations played a large role in this work. However, in the last few decades the normalized quantities have shifted into a range of irradiation doses which are many orders of magnitude smaller than those at which real effects have been observed in the human organism have been observed. At the present time, the system of regulations of radiation safety is based on the following postulates which have been adopted during last decades:

- validity of the linear, zero-threshold concept;
- inclusion in the range of practical regulation irradiation doses to 10 mSv/a (i.e., up to 100 mSv/a (100 mSv/year this is 0.1% of the average yearly individual irradiation dose to the population on Earth);
- independent regulation of the irradiation from technogenic radionuclides and the natural background, including the regulated component of the irradiation from radioactive radon, whose contribution for tens of millions of people is several-fold and sometimes an order of magnitude in the average than the irradiation from other components of the natural background;
- rejection, essentially, of optimization measures for regulating radiation risk taking account of the personal and social values of people's health - i.e., deliberately placing radiation risk into a special, most dangerous category. The evolution of radiation safety norms, first and foremost, in respect to the maximum permissible dose for the average irradiation risk in the range from 1 to 0.01 mSv/a, has resulted in the detachment of the system of normalization from the real safety indicators for atomic technologies. The assessment of the negative effect of nuclear power and radiation has been turning into an overestimation, and the environment has long been of a purely theoretical nature and cannot be definitively settled. Nonetheless, radiation safety is a special subject of numerous ecological analyses by experts and attracts unusually keen attention from oversight agencies and the general public. It is obvious that the criteria presented above are in striking contradiction to the basic principles of optimization. The contradiction is particularly manifested in considering the data on the actual irradiation of the population from the natural background.

The actual situation in the world demonstrates that at present the radiation exposure of population living in the areas of radiation-hazardous plants are very low and do not endanger the health of people. That is why there is no need in toughening the RP requirements, moreover, in order to create conditions for advanced development of civil use of atomic energy it is reasonable to correct these regulations towards their mitigation.

3. Discussion.
ICRP Publication 103 consists the following the provisions of the new RP requirements "linear no-threshold concept" and replacing it with the concept of three types of exposure situations – planned, emergency and existing exposure situations.
Based on the analysis of the previous ICRP publications, UNSCEAR reports and RP norms in Russia, as well as on the knowledge of necessity of correcting national regulatory documents, the following concept of three types of exposure situations for the planned population can be proposed:

Planned exposure situation
annual dose, mSv
5
In our opinion the new regulatory documents should revert to a dose limit for planned exposure situation of 5 mSv/year. The threshold level of 5 mSv/year for population of 1 mSv/year stated in Publication 103 is not the actual annual dose limit and in some cases this value may exceed 1 mSv per year. But we suggest to reduce this level to 5 mSv/year for any access in planned exposure situations is reasonable.
10
The area of annual doses can enter the scope of dose constraint concept, on the basis of optimization process, which relies on comparison of costs of planned activities aimed at decreasing population exposure doses with benefits for those people resulting from decrease of their lifetime risk factor.<n
Emergency exposure situation
Emergency exposure situation
level, mSv
0
It is swear to us that the value 1000 mSv for the upper bound in the emergency exposure situations is too high and it is necessary to reduce it to 500 mSv. In the case if the highest planned residual doses for population (HPRDP) can exceed the upper bound of residual levels (500 mSv) - all possible steps to achieve the reduction of residual doses to the level 500 mSv and less should be carried out. Realization of such measures will be subject to the utmost deliberation, and then dependent on real cost and expected efficiency of protection of people.
500
In the case if the HPRDP can be in the range 100 - 500 mSv - some possible measures can be taken in order to achieve the reduction of residual doses to the level 500 mSv and less should be carried out. Application of these measures for protection of people is desirable even in the case when their expediency will be proved by the principles of optimization.
100
If the HPRDP can be in the range 20 - 100 mSv - some possible measures on decrease of these doses to the level 20 mSv and less can be used. Realization of these measures only when their expediency will be proved by the principles of optimization.
10
If the planned residual doses in emergency situations for population can be below 10 mSv - any measures on protection of people is it not necessary to carry out. Consequently, it is necessary to restrict the "small doses below about 10 mSv to may be used as a generic reference level below which intervention is not likely to be justifiable" (see para 147, Publication 96).

Existing exposure situation
ICRP recommended that "the Reference levels for existing exposure situations should be set typically in the range of 10-20 mSv/year planned dose". (see para 287, Publication 103)
On our opinion for the upper bound of the reference level in this situation must be used the annual projected dose of 100 mSv.

It is generally recognized that existing International and National regulations and legislative acts are intended not only to assure nuclear, but also to control possible detrimental effects of the radiation on human health. Besides, they also should not unreasonably preclude from development of ecologically effective atomic energy and from extensive implementation of nuclear technologies into national economic, healthcare and science.
Currently existing complex multistage structure of radiation safety system is far away from the concept of optimization of the proposed human protection standards in most cases does not introduce the severe limitations into people's activity and style of living.