Dose Rate Distribution from a Standard Waste Drum Arrangement

N. Zoeger¹, A. Brandl²

¹Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf, Austria

² Environmental and Radiological Health Sciences, Colorado State University,

Fort Collins, CO 80523, USA

1 Introduction

 Dose rates as a function of the distance between source and detector are only known for a limited number of geometries (e.g. point source, line source, plane circular source)

EAR ENGINEERING

2 Objectives

• The dose rate distribution from a set of six 200-liter waste drums arranged on a standard wooden pallet should be calculated by Monte Carlo Simulation

Data should be fitted with analytical functions for

•For most source-detector geometries numerical calculations or Monte Carlo Simulations are necessary to determine the dose rate in dependence of the distance

future estimation of the dose for personnel at the Austrian Interim Radiological Waste Storage facility at Seibersdorf

3 Materials and Methods

Monte Carlo Simulations were performed using the MCNP computer code

Assumptions and conditions:

- Waste drums are filled with concrete with a density of 2.3 g/cm³
- Drum contains ⁶⁰Co in a homogeneous distribution (gamma energies of 1.17 MeV and 1.33 MeV)
- Model of waste drum according to figure 1, Modeled source-detector geometries see figure 2

-Particle histories were chosen for statistical uncertainties on the result below 1%

Figure 2: Modeled geometries. Measures in cm. Two detector locations were \rightarrow considered: D1: in front of the center drum

D2: between two drums in the front row.

Detector distances along the xaxis were 5cm to 20 m

4 Results and Discussion

The results for the two detector positions are compared in figure 3

Figure 3: Comparison of the two detector geometries. In the far-zone (distances > 1m) both distributions are equal. In the near-zone (below 1m) dose rates vary up to a factor of two, which is most likely due to the slightly increased surface-to-detector distance due to the cylindrical waste drum curvature.

The data for detector position D1 were fitted to smooth analytical functions (see figure 4).

Near Zone Dose Rate	Far Zone Dose Rate
2 .5	e 0.35

Figure 4: Least-square fits of the far- and near-zone. Near-zone: Dose rate follows a logarithmic function $DR = -7^*10^{-12} \ln(x) + 3^*10^{-11}$ Far-zone: power-law function $DR = 2^* 10^{-8} x^{-1,841}$ Dose rate (DR) in units rem h⁻¹ per gamma ray

5 Conclusions

- Most conservative dose rate was obtained in the
- mid-height and the center of the drums
- No single analytical function was found by fitting
- The power law function for x>1m closely approximates the 1/r² relationship for point sources

Authors

