Internal dose assessment of ¹⁷⁷Lu-DOTA-SP for quantification of arginine renal protection effect

¹Puerta N*., ¹Rojo A.,²Crudo J., ²Zapata A., ²Nevares N., ²López Bularte A., ²Perez J., ²Zaretzky A.

*npuerta@arn.gob.ar

¹Nuclear Regulatory Authority. Av. del Libertador 8250. Buenos Aires, Argentina

²National Atomic Energy Commission. Presb. Juan González y Aragón 15. Ezeiza, Argentina

1.INTRODUCTION

¹⁷⁷Lu-DOTA-Substance P (SP) could be used in peptide receptor radionuclide therapy (PRRT) for treatment of malignant glioblastoma. The limiting factor is the dose delivered to healthy organs therefore, it is necessary to identify the organ with the highest radiological risk and calculate the maximum activity that can be administered to a patient in a safe way, it means Maximum Tolerate Activity (MTA). Because in PRRT, one the healthy organ with the highest risk of reaching radiotoxicity is commonly the kidney, in this study the results of ¹⁷⁷Lu-DOTA-SP preclinical assays carried out in NIH mice are compared and extrapolated to adult humans, for two conditions: with and without prior administration of arginine as a potential renal protective agent.

2. OBJECTIVE

To investigate the renal protective effect of arginine in the administration of ¹⁷⁷Lu-DOTA-SP in normal NIH mice and its extrapolation to standard adult patients.

Table 2: MTA (MBq/kg) in adult humans for two cases

MTA for case with Arginine		MTA for case without Arginine	
Woman	Man	Woman	Man
338	234	306	170

30 min

■2 h

🗆 6 h

🗆 16 h

48 h

В С

0.06

0.05

0.22

1.59

0.05

0.05

0.05

0.22

0.01

5.CONCLUSIONS

Kidney is the healthy organ with the highest radiological risk. following the intravenously administration of ¹⁷⁷Lu-DOTA-SP.

It was found out that the administration of arginine prior to injection of ¹⁷⁷Lu-DOTA-SP optimize the treatment, showing a rapid clearance from the body and less retention in kidney with respect to the situation in which the amino acid is not administered.

The dosimetric results extrapolated to humans should be taken into account exceeding for not the radiotoxicological threshold in kidney (20 Gy) and thus ensure the radiological protection of patients.