Internal dose assessment of 177Lu-DOTA-SP for quantification of arginine renal protection effect

1. INTRODUCTION

177Lu-DOTA-Substance P (SP) could be used in peptide receptor radionuclide therapy (PRRT) for treatment of malignant glioblastoma. The limiting factor is the dose delivered to healthy organs therefore, it is necessary to identify the organ with the highest radiological risk and calculate the maximum activity that can be administered to a patient in a safe way, it means Maximum Tolerate Activity (MTA). Because in PRRT, one the healthy organ with the highest risk of reaching radiotoxicity is commonly the kidney, in this study the results of 177Lu-DOTA-SP preclinical assays carried out in NIH mice are compared and extrapolated to adult humans, for two conditions: with and without prior administration of arginine as a potential renal protective agent.

2. OBJECTIVE

To investigate the renal protective effect of arginine in the administration of 177Lu-DOTA-SP in normal NIH mice and its extrapolation to standard adult patients.

3. METHODS

3.1. Biodistribution Study

- Injected into the tail vein of the mouse
- 20 mice in normal conditions
- 8 mice with prior administration of arginine
- Sacrifice mouse at: 0.5h, 2h, 6h, 16h, 48h in normal conditions and 0.5h, 2h, 6h for mice with prior administration of arginine
- Remove and weigh organs
- Measure activity in automatic gamma counter
- Calculate the percentage of injected activity of 177Lu-DOTA-SP per gram of tissue (%IA/g)

3.2. Dosimetric Studies

- Experimental data of organ activity were fitted to curves
- Doses of mouse organs were determined using MIRD methodology
- Extrapolation to humans was performed using time scaling method
- Doses of human organs and MTA of 177Lu-DOTA-SP were estimated

4. RESULTS

4.1. Biodistribution data of 177Lu-DOTA-SP in normal NIH mice

Table 1: Absorbed dose in organs of the NIH mouse (A), adult female (B) and adult male (C).

<table>
<thead>
<tr>
<th>Organs</th>
<th>Absorbed Dose (mGy/MBq)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>with Arginine</td>
</tr>
<tr>
<td>Kidneys</td>
<td>115.07</td>
</tr>
<tr>
<td>Liver</td>
<td>8.47</td>
</tr>
<tr>
<td>Lungs</td>
<td>17.05</td>
</tr>
<tr>
<td>Stomach</td>
<td>5.64</td>
</tr>
<tr>
<td>Spleen</td>
<td>27.70</td>
</tr>
<tr>
<td>Intestine</td>
<td>1.81</td>
</tr>
<tr>
<td>Bone Marrow</td>
<td>0.57</td>
</tr>
</tbody>
</table>

5. CONCLUSIONS

Kidney is the healthy organ with the highest radiological risk, following the intravenously administration of 177Lu-DOTA-SP.

It was found out that the administration of arginine prior to injection of 177Lu-DOTA-SP optimize the treatment, showing a rapid clearance from the body and less retention in kidney with respect to the situation in which the amino acid is not administered.

The dosimetric results extrapolated to humans should be taken into account for not exceeding the radiotoxicological threshold in kidney (20 Gy) and thus ensure the radiological protection of patients.