COEX, “Everything Under One Roof”

COEX is many convenors’ venue of choice, providing more than 20 years of experience for international and domestic meetings and exhibitions. Onsite facilities include three great quality hotels, an enormously sized shopping mall, a city airport terminal and an advanced IT infrastructure, ensuring that all business, entertainment and shopping can be met under one roof.

About Seoul

Seoul is an intriguing unique meetings destination with a fascinating dual character where ancient traditions meet ultramodern technological styles. It is home to the captivating UNESCO World Heritage-listed palaces and shrines as well as the gleaming futuristic skyscrapers. Along the way, you’ll meet many fun-loving and professional people and discover an ancient capital powered by some of the most modern technology on earth before your Seoul-based event is over. This is because Seoul is a place of boundless discoveries, where no two visits are alike; the traditions of centuries have blended together with the fast-paced dynamism of the 21st century; and the people who live here are as serious about making your business events a success as they are committed to the enjoyment of life.

IRPA15 Secretariat

(A) 4F, SUNGJI Building 192, Bangbae-ro, Seocho-gu, Seoul 06586, Republic of Korea
(T) +82-2-6288-6338 (F) +82-2-6288-6399 (E) info@irpa2020.org
Congress Overview

Congress

15th International Congress of the International Radiation Protection Association (IRPA15)

Date

11(Mon) – 15(Fri) May 2020

Venue

COEX, Seoul, Korea

Official Language

English

Congress Theme

Bridging Radiation Protection Culture and Science – Widening Public Empathy

Expected Participants

2,500 participants from over 90 countries

Website

www.irpa2020.org

Important Dates

Abstract Submission Open

1 June 2019

Abstract Submission Deadline

- Oral Presentation: 30 September 2019
 (Notified by 31 December 2019)
- Poster Presentation: 31 December 2019
 (Notified by 31 January 2020)

Full Papers (Oral/Poster) Submission Deadline

31 March 2020

Early Registration Deadline

31 January 2020

Standard Registration Deadline

26 April 2020

Invitation

Dear Delegates and Friends,

On behalf of the IRPA 15 International Congress Organising Committee (ICOC), it is my great pleasure to invite you to the 15th International Congress of the International Radiation Protection Association (IRPA) to be held on 11-15 May 2020 in Seoul, Korea.

The Organising Committee has put in a tremendous effort to make the most highly acclaimed congress in radiation protection even more rewarding and enjoyable, with a comprehensive and inspiring scientific programme while maintaining the IRPA traditions and promoting mutual friendship.

Under the theme of “Bridging Radiation Protection Culture and Science – Widening Public Empathy”, IRPA 15 will provide invaluable opportunities to discuss and strengthen the correlation between Radiation Protection culture and science, and share developing scientific knowledge and related experiences in radiation protection not only among experts but also with the public.

In light of the Fukushima Daiichi nuclear disaster, the significance of radiation protection and the focus on it is growing day by day. At the same time, irrational perceptions of radiation exposure are spreading fast. At such a moment, our duty as radiation protection professionals is to disseminate accurate information and cultivate a more reasonable perception, which is more important than ever before, so that the public can empathize with the issue of radiation risk and protection.

As a city with more than a 600-year history, Seoul, the nation’s capital and the venue city of this congress, possesses a wealth of historical monuments, tourist attractions and vivid lifestyles in an exceptionally safe environment. Excellent hotels and the attractive meeting venue (COEX), which is the most modern, high-tech facility in Asia, will make your participation as easy and comfortable as possible.

I would like to express my heartfelt appreciation for your interest in IRPA 15, and I look forward to welcoming you to Seoul in 2020 for the IRPA 15.

Jong Kyung KIM
Chairman
IRPA15 International Congress Organising Committee

Congress Theme

Bridging Radiation Protection Culture and Science – Widening Public Empathy

After the Fukushima Daiichi nuclear power plant accident in 2011, the importance of radiation protection culture and public empathy as well as radiation protection science has emerged and is widely accepted as one of the most important elements for the sound, practical, and effective implementation of the radiation protection principles and technologies in the international radiation protection community.

Science is a basic and essential element of radiation protection. Despite the recent rapid development of radiation protection science, ethical and social value judgments as well as practical field experiences have gradually emerged and are important elements in the international system of radiation protection.

As witnessed at the Fukushima Daiichi nuclear power plant accident in 2011, an apparent gap of understanding between experts and the public resulted in difficulties in the proper implementation of radiation protection measures and strategies. Experience from radiological emergencies highlights the importance of public communication and empathy as one of the most important challenges in radiation protection. Sometimes, an event is not considered to be a danger to experts but is perceived otherwise by the public. Also, the public intends to strongly make their own arguments when considering and facing the risk of radiation exposure.

“Empathy” implies a connection, which goes beyond communication – it means that there must be an emotional engagement, a full understanding and recognition of how the parties feel about the issue, which must be central to an ability to move forward. Without public empathy, a decision for implementation of radiation protection criteria, though it is based on sound science, has to go through lots of difficulties. Indeed, the public empathy includes comprehensive natures such as transparency, stakeholder involvement, self-help protection and an informed consent/decision.

The adoption of the theme “Bridging Radiation Protection Culture and Science – Widening Public Empathy” for the IRPA15 Congress reflects the strong commitment of the IRPA15 Organising Committee to provide invaluable opportunities to discuss and strengthen the correlation between Radiation Protection culture and science, and share various scientific knowledge and experiences on radiation protection not only among experts but also with the public. The IRPA15 Congress will certainly contribute to opening a new pathway to the development of future system of radiation protection, which is to be based on public empathy.
Scientific Programme

The scientific programme will comprehensively address the full scope of radiation protection science and practice, grouped into eight Topic Areas. In addition, four cross cutting Themes have been identified for exploration, as appropriate within the Topic Areas or in specific Overview Sessions.

<table>
<thead>
<tr>
<th>Topic Areas</th>
<th>Themes</th>
<th>Ethics</th>
<th>Communication, Public Understanding and Stakeholders</th>
<th>Human Capital & Competency</th>
<th>Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1. Underpinning Science</td>
<td>T1.1 Dose and dose rate dependence of cancer risk</td>
<td>T1A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T1.2 Non-cancer effects of ionizing radiation</td>
<td>T1B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T1.3 Individual radiation sensitivity</td>
<td>T1C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T1.4 Processes influencing radionuclide transfers and exposure of humans and wildlife</td>
<td>T1D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2. Dosimetry and Measurement</td>
<td>T2.1 Dosimetry</td>
<td>T2A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2.2 Numerical and computational dosimetry: mathematical methods and models applied to radiation dosimetry</td>
<td>T2B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2.3 Instrumentation and metrology</td>
<td>T2C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2.4 Tools and quality criteria for epidemiology and radiation risk assessment</td>
<td>T2D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3. System of Protection, Standards and Regulation</td>
<td>T3.1 Experience in implementing ICRP publications recommendations</td>
<td>T3A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3.2 Protection standards for special populations (including pregnant women, children)</td>
<td>T3B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3.3 Influence of dose response models on standards and regulations</td>
<td>T3C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3.4 Education, training, human capital</td>
<td>T3D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3.5 Role of stakeholder engagement in the system of radiological protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3.6 Managing the natural environment: challenges of regulating terrestrial and cosmic exposures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4. Practical Implementation of Radiation Safety in Medical Facilities</td>
<td>T4.1 Design of medical radiation facilities</td>
<td>T4A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T4.2 Radiation safety of staff in the medical facilities</td>
<td>T4B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T4.3 Patient radiation safety</td>
<td>T4C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T4.4 Patient dosimetry</td>
<td>T4D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T5. Practical Implementation: Industry and Research	T5.1 Mining and mineral processing	T5A			T5D
	T5.2 Nuclear fuel cycle	T5B			T5C
	T5.3 Nuclear power plants	T5C			T5D
	T5.4 Industrial and research applications	T5D			T5C
	T5.5 Transport	T6A			T6D
	T5.6 Waste management and disposal	T6B			T6C
T6. Emergency Preparedness and Response	T6.1 International standards and national regulations	T6A			T6D
	T6.2 Radiological, environmental and social impacts of the accident	T6B			T6C
	T6.3 Waste management and remediation strategy	T6C			T6D
	T6.4 Management of contaminated goods	T6D			T6C
	T6.5 Management of occupational exposures				
	T6.6 Health and environmental surveillance				
	T6.7 Communication during and after an emergency				
	T6.8 Transition from an emergency exposure situation to an existing exposure situation				
T7. Existing Exposures	T7.1 Radon and thoron	T7A			T7D
	T7.2 Terrestrial radiation and radionuclides	T7B			T7C
	T7.3 Cosmic radiation	T7C			T7D
	T7.4 Naturally occurring radioactive materials (NORM) and technically enhanced naturally occurring radioactive materials (TENORM)	T7D			
	T7.5 Post-accident				
T8. Non-ionizing Radiation	T8.1 International standards and national regulations	T8A			T8D
	T8.2 NIR radiation protection culture (IR versus NR)	T8B			T8C
	T8.3 Diagnostic devices using NIR	T8C			T8D
	T8.4 Role of stakeholder engagement in the system of NIR protection				
	T8.5 NIR-based cosmetic devices: what is needed to ensure protection?				
	T8.6 RF technologies: upcoming scientific challenges (e.g. epidemiology, dosimetry,…)				
	T8.7 Ultrasound and infrasound: medical and non-medical applications				
	T8.8 Ultraviolet radiation				

<table>
<thead>
<tr>
<th>Thematic Overview Sessions</th>
<th>Ethics</th>
<th>Communication, Public Understanding and Stakeholders</th>
<th>Human Capital & Competency</th>
<th>Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5A</td>
<td>T5B</td>
<td>T5C</td>
<td>T5D</td>
<td></td>
</tr>
<tr>
<td>T6A</td>
<td>T6B</td>
<td>T6C</td>
<td>T6D</td>
<td></td>
</tr>
<tr>
<td>T7A</td>
<td>T7B</td>
<td>T7C</td>
<td>T7D</td>
<td></td>
</tr>
<tr>
<td>T8A</td>
<td>T8B</td>
<td>T8C</td>
<td>T8D</td>
<td></td>
</tr>
<tr>
<td>T8A</td>
<td>T8B</td>
<td>T8C</td>
<td>T8D</td>
<td></td>
</tr>
</tbody>
</table>
Notices and Sponsorship Opportunities

Organisation

IRPA15 ICOC (International Congress Organising Committee)

Chairman: Jong Kyung Kim
Hanyang University, Korea

Vice-Chairman: Kun-Woo Cho
Korea Institute of Nuclear Safety, Korea

General Secretary: Tan-Suk Suh
The Catholic University, Korea

Deputy General Secretary: Hee-Seock Lee
Pohang University of Science and Technology, Korea

Secretary: Hee Seo
Korea Atomic Energy Research Institute, Korea

Treasury Committee Chair: Ho Sin Choi
Korea Institute of Nuclear Safety, Korea

Treasury Committee General Secretary: Sung Hwan Kim
The Catholic University, Korea

Promotion & Marketing Committee Chair: Yong Kyun Kim
Hanyang University, Korea

Promotion & Marketing Committee General Secretary: Keon Wook Kang
Seoul National University, Korea

Exhibition Committee Chair: Moon Hee Han
Korea Atomic Energy Research Institute, Korea

Technical Visit Committee Chair: Bong-Hwan Kim
Korea Atomic Energy Research Institute, Korea

Social Event Committee Chair: Eun-Ok Han
Korea Academy of Nuclear Safety, Korea

Young Scientists Awards: Jin-Sung Kim
Yonsei University, Korea

IRPA15 ICPC (International Congress Programme Committee)

Chairman: Wolfgang Weiss
German-Swiss Association for Radiation Protection, Germany

IRPA President: Roger Coates
International Radiation Protection Association, UK

Core Group: Mike Boyd
Health Physics Society, USA

Marina Di Giorgio
Société Française de Radioprotection, France

Sisal Salomaa
Nordic Society for Radiation Protection, Finland

John Takala
Canadian Radiation Protection Association, Canada

Jim Thurston
Society for Radiological Protection, UK

Shoichi Takahashi
Japan Health Physics Society, Japan

Ludovic Vaillant
Société Française de Radioprotection, France

Corresponding Group: 52 Members from 27 Countries

Collaboration Organisations

13 International Organisations
- International Atomic Energy Agency (IAEA)
- International Commission on Non-Ionising Radiation Protection (CNIHRP)
- International Commission on Radiological Protection (ICRP)
- International Commission on Radiation Units and Measurements (ICRU)
- International Labour Organisation (ILO)
- International Organization for Medical Physics (IOMP)
- International Society of Radiographers and Radiological Technologists (ISRRT)
- National Council on Radiation Protection and Measurements (NCRP)
- OECD Nuclear Energy Agency (OECD/NEA)
- Pan American Health Organization (PAHO)
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR)
- World Health Organization (WHO)
- World Nuclear Association (WNA)

Scientific Secretary: Kyo-Youn Kim
Korea Atomic Energy Research Institute, Korea

Deputy Scientific Secretary: Seongyoung Nam
Sejong University, Korea

Oral & Poster Review: Young-Min Kim
Catholic University of Daegu, Korea

Refresher Courses: Geethyun Kim
Sejong University, Korea

Proceedings & Publications: Chul Hee Min
Korea University, Korea

IRPA15 ISCS (International Congress Support Committee)

Chairman: Steven King
Health Physics Society, USA

General Secretary: Kwang Pyo Kim
Kyunghee University, Korea

Secretary: Eui Kyu Chie
Seoul National University, Korea

IRPA15 Advisory Committee

Chairman: Myung-Chul Lee
The Korean Academy of Science and Technology, Korea

General Secretary: Woo Yoon Park
The Korean Association for Radiation Protection, Korea

International Advisor: Jacques Lochard
Société Française de Radioprotection, France