

Possible Consequences of Inhomogeneous Suborgan Distribution of Dose and the Linear No-Threshold Dose-Effect Relationship

Balázs G. Madas IRPA13 Young Professionals Prize Candidate Centre for Energy Research, Hungarian Academy of Sciences

Contents

- Introduction a non-treated issue in radiation protection: the spatial suborgan distribution of dose
- Objective the possible consequences of spatial inhomogeneity of dose
- Methods
- Results
- Conclusions differences between exposure from radon and other radiation sources

Introduction – a theoretical question

 spatial dose distribution within the organs – not considered by radiation protection

 very different exposure scenarios – the same effective dose and nominal risk

A practical issue – radon inhalation

- radon progeny inhomogeneous deposition in the lungs
- significant issue in radiation protection
 - contribution to natural radiation burden of the public
 - second most important cause of lung cancer

Objective

- What consequences have the inhomogeneous dosedistribution,
 - if nominal risk is linear function of absorbed dose?
 - if nominal risk is non-linear function of absorbed dose?

Methods

- introduction of tissue units (TUs) with an approximate size of 250 μm × 250 μm × 60 μm, where absorbed dose is computed
- introduction of alternative equivalent dose (H_T^*) as the function of dose absorbed by TUs $(D_{TU,i})$
- introduction of alternative effective dose (E*) considering the suborgan dose distribution with the following expression:

•
$$E^* = \sum_i w_{TU,i} \cdot H_T^*(D_{TU,i})$$
, where $w_{TU,i} = \frac{m_{TU,i}}{m_T} \cdot w_T$

 the dose distribution in the lungs is identical with the dose distribution in the central airways

Results

- only α-exposure
- the linear function independent on the dosedistribution
- the non-linear functions are much closer to the linear one in case of inhomogeneous exposure

Results

- an inhomogeneous α- & a homogeneous β-exposure
- the linear function independent on the dosedistribution
- the non-linear functions are much closer to the linear one in case of inhomogeneous exposure

Conclusions

- Spatial distribution of dose cannot be considered, if the relationship between nominal risk and absorbed dose is linear.
- If there are any low dose nonlinearity in risk, it is probably less significant in case of inhaled radon progeny, than in case of radiation sources causing homogeneous exposures.
 - Proved linear relationship in case of radon does not necessarily mean linear relationship in the low dose range in general.
 - Proved low dose nonlinearity in case of homogeneous exposures does not necesseraly mean nonlinear risk-exposure relationship in case of radon progeny.

Acknowledgments

- I would like to thank
 - Imre Balásházy, my supervisor

- the Roland Eötvös Physical Society for the travel support
- the Organizers for giving the opportunity for the talk, and for the bursary

e-mail: madas.balazs@energia.mta.hu