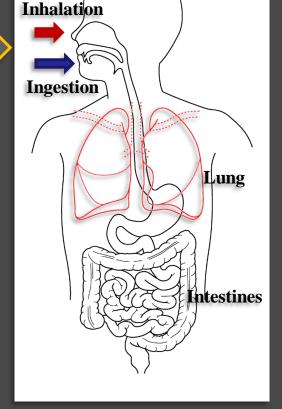
13th International Congress of the International Radiation Protection Association

TS2b.8

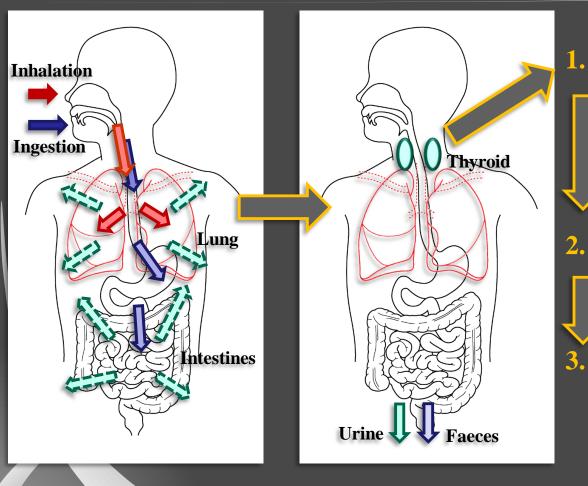
Estimation of Radionuclide Biokinetics Dependence on Intake Conditions for Internal Exposure

Kotaro TANI¹, Yuki FUJIMICHI¹, Satoshi IWAI², Toshiso KOSAKO¹

¹The University of Tokyo ²Japan Nuclear Technology Institute


14th, May, 2012

Internal contamination of public



- Internal contamination of public by...
 - Inhalation in radioactive clouds
 - Inhalation of resuspended radioactivity from soil
 - Ingestion of food or drinking water
 - **⇒** Some pathways and over a long period
 - 1-131 and Cs-137 mainly became

a problem in the Chernobyl and Fukushima accident 2

Biokinetics and internal dose evaluation

Activity in the specific organ by *in vivo* measurement

- Thyroid for I-131
- Whole body for Cs-137

Total intake

• By the retention function

Internal dose

• By the dose coefficient

(Sv/Bq)

3

Problem and purpose

- Problem
 - Acute inhalation (general worker's intake situation)

has been mainly assumed in dose evaluations

⇒ Retention function may change

due to the difference in intake situations

• Purpose

- Analyze the retention function of I-131 and Cs-137

based on assuming some intake conditions

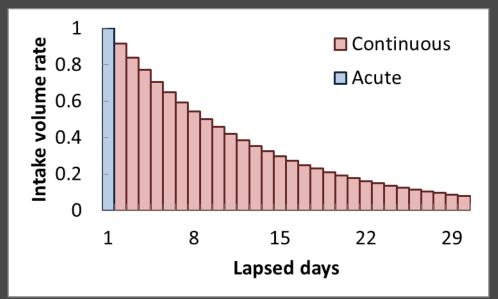
– Discuss about the application of biokinetics

to internal dose evaluation

Biokinetic models

Human Respiratory TractHuman Alimentary TractModel (ICRP Publ. 66)Model (ICRP Publ. 100)

	xi(ti)	ET1	1220.0224000KP	REASON CONTRACT	5 3	03/06/06/06/	CONTRACTOR OF CONTRACT	E1	CONSCRETE/CONTRACTOR	5 3	17-17-17-17-17-17-17-17-17-17-17-17-17-1	Contraction and the second	2000270304051	Resources the	5 3	100000000000	BB1	1280.00280.00FP	Statute of the state	In service of the	ε4
	0.000	33.9	-33.9	-33.8	-33.8	-33.8	39.9	-7965	-7168	-7248	-6515	0.0200	-2.00	-1.90	-1.90	-1.81	1.30	-142	-134	-135	-127
	0.001	33.8	-33.8	-33.8	-33.8	-33.8	327	-6523	-5878	-5935	-5335	0.0181	-1.81	-1.72	-1.72	-1.63	1.17	-127	-120	-121	-114
	0.000	33.8	-33.8	-33.8	-33.8	-33.8	26.8	-5341	-4807	-4861	-4369	0.0163	-1.63	-1.55	-1.56	-1.48	1.05	-114	-108	-108	-102
1	0.0	33.7	-33.8	-33.7	-33.7	-33.7		-4374	-3937	-3981	-3578	0.01 18	-1.48	-1.40	-1.41	-1.34	0.94	-102	-97	-97	-92
T-lala	0.004		-33.7	-33.7	-33.7	-33.7		-3582	-3224	-3260	-2930	5	-1.34	-1.27	-1.27	-1.21	84	-92	-87	-87	-82
Inhalatiø	0.005		23.7	-33.7	-33.7	-33.6		-2934	-2640	-2670	-2400	21	-1.21	-1.15	-1.15	-1.15	76	-82	-78	-78	-74
	0.006	33.		-33.6	-33.6	-33.6	12.	2403	-2163		-1966	110	-1.10	-1.04	-1.04	-5	0.68	-74	-70	-70	-66
-	0.007	33.5		-33.6	-33.6	0	9.87	968	-1771	7 7	-161	0099	-0.99	-0.	-0.94		0.61		-63	-63	-59
- Hi	0.008	33.5	-33 b	3.5	-33.6		8.09	2	-1451		-13	0.0090	-0.90	-08	-0.87	J.81	0.55	- 7	-56	-56	-53
	0.009	33.5	-33.5	5	-33.5		6.63		-1188	-1	-1	0.0081	-0.81	-0	-	-0.73	0.49		-50	-51	-48
Ingestion	0.010	33.5	-225	-00 5	-22.5		E 43	-1081	-973	-9		0.0073	-0.73	-0	-0.70	-0.66	0.44	8	-45	-45	-43
ingestion	0.011	33.5	-	T	-		5	-886	-797	-81	-725	0.0066	-0.66	-1	-0.63	-0.60	0.39	-43	-41	-41	-38
	0.012	33.4	-	Lar	osed	dav	5	-726	-653	-66.	-594	0.0060	-0.60	-	-0.57	-0.54	0.3	-38	-36	-36	-34
	0.013	33.4	-	•• r				-595	-535	-541	-486	0.0054	-0.54		-0.52	-0.49	0	-35	-33	-33	-31
	0.014	33.4	-33.4	-33.4	-33.4	-33.3						0.0049	-0.49		-0.47	-0.45	0.29	-31	-29	-29	-28
	0.015	33.3	-33,3	-33.3	-33.3	-33.3	C C	'om	part	moi	nte	0.0045	-0.45	-0.42	-0.42	-0.40	0.26	-28	-26	-26	-25
΄ \ []	0.016	33.3	-33.3	-33.3	-33.3	-33.3		JUII	pari		112	0.0040	-0.40	-0.38	-0.38	-0.36	0.23	-25	-24	-24	-22
	0.017	33.3	-33.3	-33.3	-33.3	-33.2	1.35	-268	-241	-244	-219	0.0036	-0.36	-0.35	-0.35	-0.33	0.21	-22	-21	-21	-20
	0.018	33.2	-33.2	-33.2	-33.2	-33.2	1.11	-220	Б		T 7					-0.30	0.18	-20	-19	-19	-18
	0.019	33.2	-33.2	-33.2	-33.2	-33.2	0.91	091 -180 Kunge-K					utta method			-0.27	0.17	-18	-17	-17	-16
	0.020	33.2	-33.2	-33.2	-33.2	-33.1	0.75	-148)	-0.24	0.15	-16	-15	-15	-14
	0.021	33.1	-33.1	-33.1	-33.1	-33.1	0.61	-121	-109	-110	-99	0.0024	-0.24	-0.23	-0.23	-0.22	0.13	-14	-14	-14	-13
	0.022	33.1	-33.1	-33.1	-33.1	-33.1	0.50	-99	-89	-90	-81	0.0022	-0.22	-0.21	-0.21	-0.20	0.12	-13	-12	-12	-12
	0.023	33.1	-33.1	-33.1	-33.1	-33.0	0.41	-81	-73	-74	-67	0.0020	-0.20	-0.19	-0.19	-0.18	0.11	-12	-11	-11	-10
	0.024	33.0	-33.0	-33.0	-33.0	-33.0	0.34	-67	-60	-61	-55	0.0018	-0.18	-0.17	-0.17	-0.16	0.10	-10	-10	-10	-9
	0.025	33.D 33.D	-33.0 -33.0	-33.0 -33.0	-33.0 -33.0	-33.0 -33.0	0.28	-55 -45	-49 -40	-50 -41	-45 -37	0.0016	-0.16 -0.15	-0.16 -0.14	-0.16 -0.14	-0.15	90.0 80.0	-9 -8	-9 -8	-9 -8	-8 -8
	0.020	32.9	-33.0	-32.9	-32.9	-32.9	0.23	-45	-33	-34	-30	0.0013	-0.13	-0.14	-0.14	-0.13	0.08	-8	-0	-0	7
۱ ¿ ′	0.027	32.9	-32.9	-32.9	-32.9	-32.9	0.15	-30	-27	-27	-30	0.0012	-0.13	-0.12	-0.13	-0.12	0.07	-0	-6	-6	-6
El	0.029	32.9	-32.9	-32.9	-32.9	-32.9	0.13	-25	-22	-23	-20	0.0011	-0.11	-0.10	-0.10	-0.10	0.06	-6	-6	-6	-5
	0.020	32.8	-32.9	-32.8	-32.8	-32.8	0.10	-20	-18	-19	-17	0.0010	-0.10	-0.09	-0.09	-0.09	0.05	-5	-5	-5	-5
			1	52.0	52.0	52.0			10			and the second			11	-0.03		-	J	J	3
Urine Feces dt dt 5																					


 I_1

 $\cdot C_2$

Metabolic Model (ICRP Publ. 67, 68)

Conditions of biokinetic analyses

- Intake conditions
 - Inhalation or ingestion
 - Acute or continuous intake
 - 1. Acute inhalation
 - 2. Continuous inhalation
 - **3.** Acute ingestion
 - 4. Continuous ingestion

- Basic conditions
 - I-131
 - Type F, $f_1 = 1.0$
 - AMAD = $1 \mu m$
 - Metabolic parameters for 1 year old child
- Cs-137
 - Type F, $f_1 = 1.0$
 - AMAD = $1 \mu m$
 - Metabolic parameters for adult

Thyroid retention functions (I-131)

Thyroid remains rate [%]

				_		Inhal	ation	Inge
ज् ³⁰	-		Acute inha	lation		Acute	Cont.	Acute
³⁰ 25 20	<u> </u>		 Continuous inhalation Acute ingestion Continuous ingestion 20 30 psed days 	stion	1 day after	13	8.5 (0.65)	26
15 10				s ingestion	5 days	9.2	10 (1.1)	19
roid 2				· · · · ·	10 days	5.7	8.5 (1.5)	12
۲ <mark>۲</mark>) 1	0 Langed		30	20 days	2.3	5.0 (2.2)	4.6
		Lapsed	uays		30 days	0.89	2.7	1.8

Ingestion

(3.1)

Cont.

17

(0.67)

21

(1.1)

17

(1.5)

10

(2.2)

5.6

(3.1)

(Whole body retention function (Cs-137)

Whole body remains rate [%]

						Inhal	ation	Inge	stion
	100	×		A	_	Acute	Cont.	Acute	Cont.
s rate [9	80		<u> </u>	 Acute inhalation 	1 day after	34	34 (1.0)	100	100 (1.0)
remains	60	_		Continuous inhalation	5 days	31	33 (1.1)	92	96 (1.0)
Whole body remains rate [%]	40 20	_	 	 Acute ingestion Continuous 	10 days	29	(1.1) 31 (1.1)	87	93 (1.1)
Ň	0	ingestion	20 days	28	30 (1.1)	82	89 (1.1)		
		Lapsed	 		30 days	26	30 (1.2)	77	89 (1.2)

Separation of inhalation and ingestion

Percentage of remains rate of nasal pathway and thyroid after inhalation [%]

pathw	vay			Acute		Continuous			
0 Thyro	bid		Nasal pathway (R _N)	Thyroid (R _T)	R _T /R _N	Nasal pathway (R _N)	Thyroid (R _T)	R _T /R _N	
\sum		5 hours after	27	5.5	0.20	50	2.8	0.055	
		10 hours	22	9.1	0.41	40	4.9	0.12	
		15 hours	18	11	0.63	35	6.5	0.19	
		20 hours	14	12	0.85	31	7.6	0.25	
$\langle \rangle$		24 hours	11	12	1.1	27	8.5	0.31	

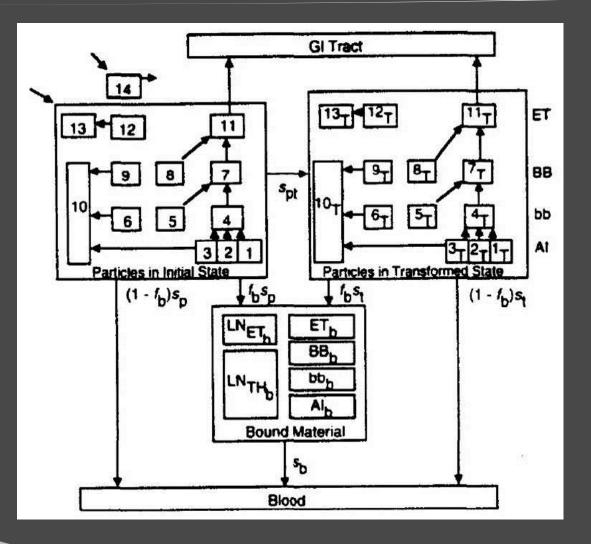
Measure the activities of nasal pathway and thyroid (M_N, M_T)

Nasal

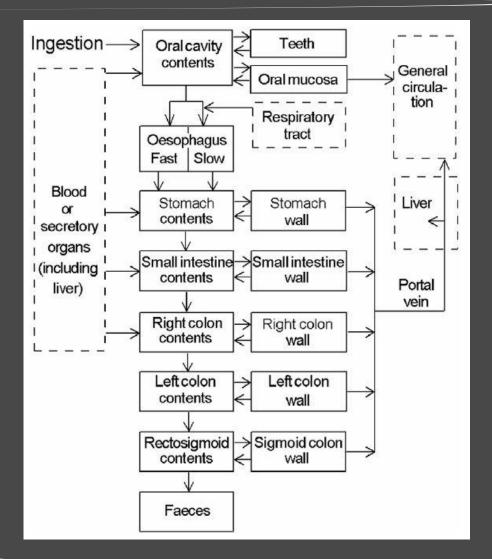
Estimate thyroid activities caused by inhalation (A_{INH}) and ingestion (A_{ING})

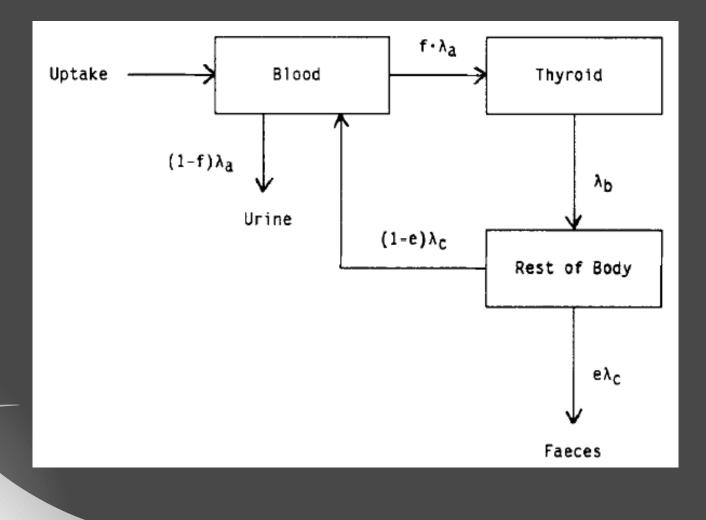
 $A_{INH} = \frac{R_T}{R_N} M_N \qquad A_{ING} = M_T - A_{INH}$

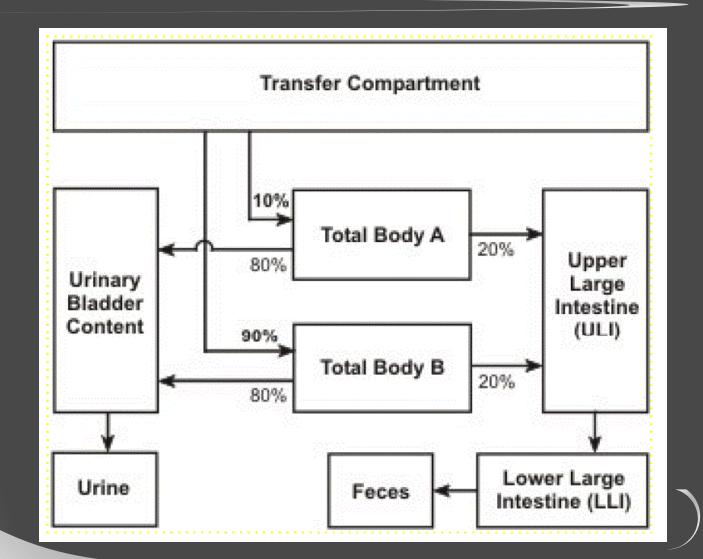
Evaluate internal dose separately

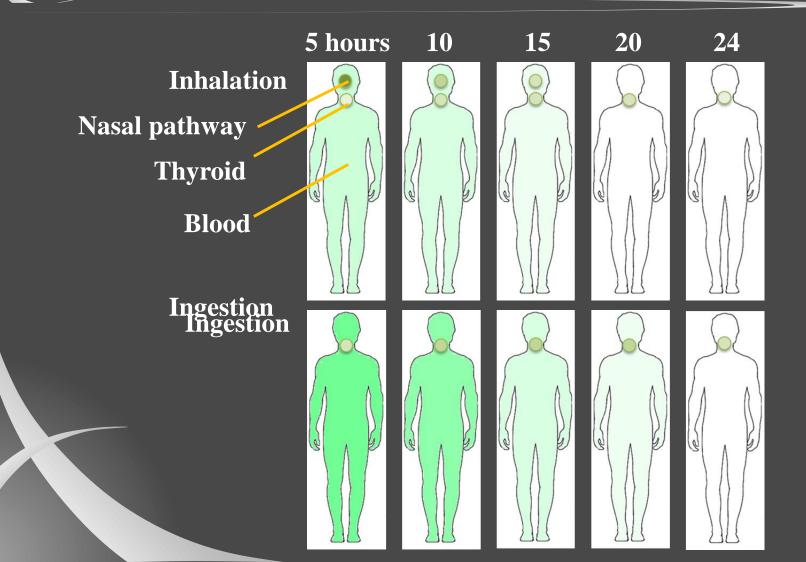

• In internal dose evaluation,

it is important to consider the biokinetics of intake conditions


- Thyroid retention functions of I-131 vary 0.65 to 3.1 times on the range from 1 day after to 30 days after, although whole body retention functions of Cs-137 are almost same (1.0-1.2 times)
- 2. Considering the I-131 deposition to nasal pathway, thyroid deposition activity can be separated by inhalation and ingestion and evaluated internal dose separately


(The Human Respiratory Tract Model


The Human Alimentary Tract Model


Bigkinetic Model (Iodine)

Bigkinetic Model (Cesium)

(Visualization of Biokinetics (I-131)

