

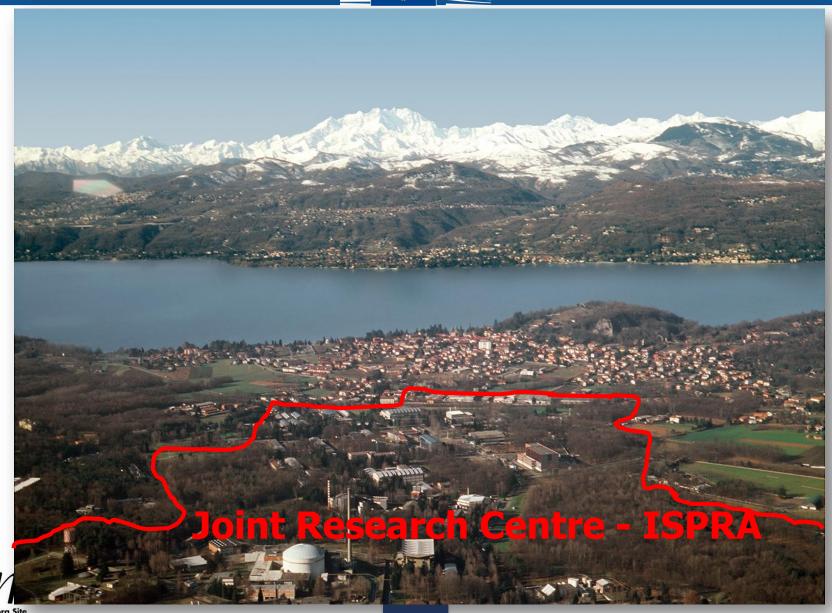
Final release of the "Radiochemistry Hot Laboratory" at the Joint Research Centre in JRC-Ispra, Italy

13 - 18 May 2012 SECC Glasgow Scotland

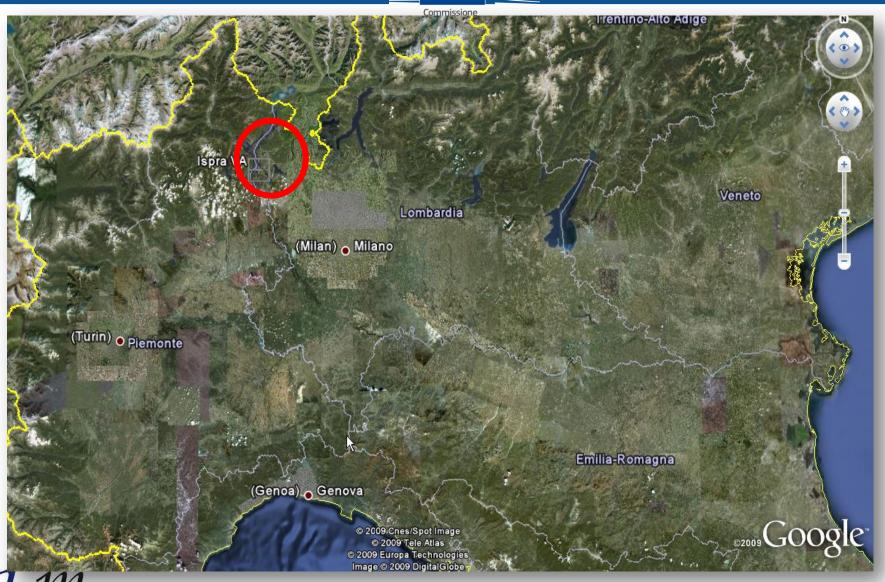
Daniele GIUFFRIDA

Cristina REQUEJO CORONADO Elisa PERSICO Marek FUTAS Francesco ROSSI

Nuclear Decommissioning Unit Radiation Protection Sector



JOINT RESEARCH CENTRE



JRC-ISPRA



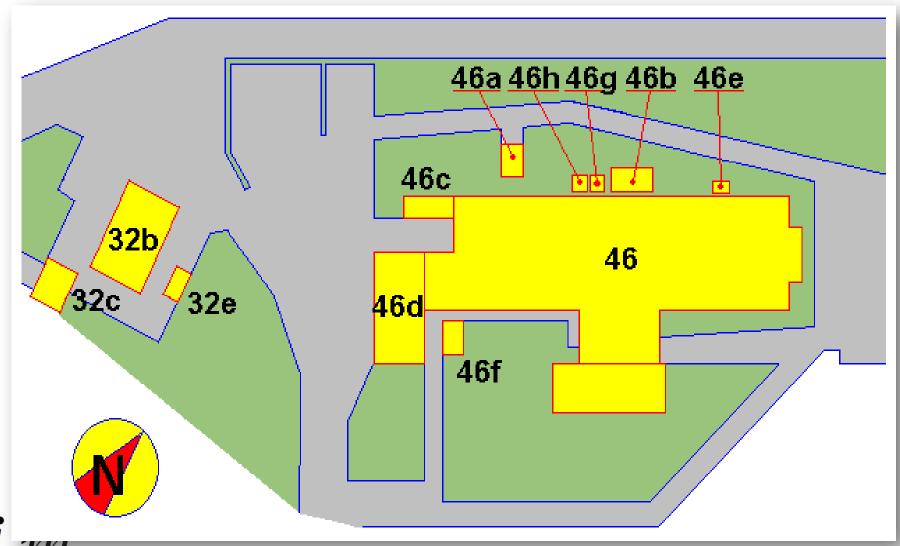
JRC-ISPRA

167 HECTARES PERIMETER: 6 km 6 km OF ROADS **BUILDINGS**

2500 WORKERS

RELEASE?

RP, for the environment and the population


endpoint of Decommissioning process

Building	Surface (m ²)	Volume (m ³)	Levels	Main Uses
46	1.896	13.003	3	Laboratory
46d	307	2.525	3	Laboratory
32b	245	862	2	Stabularium
32c	48	<i>83</i>	1	Active liquid waste Store
32e	12	<i>30</i>	1	Warehouse
46f	13	33	1	Warehouse
46g	14	<i>33</i>	1	Warehouse
46h	14	<i>33</i>	1	Warehouse
TOTAL	2.652	16.890	-	-

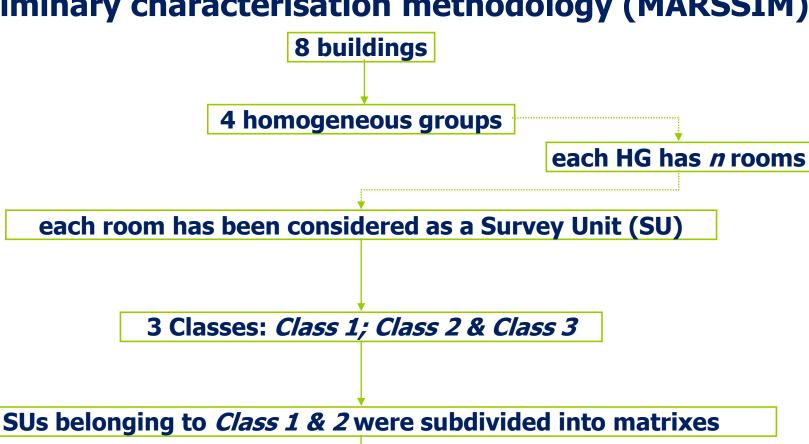
Decommissioning steps

In the frame of the D&WM Programme, the goal of this project was the decommissioning of the RCHL up to the so-called "brown field" status without any radiological constraints.

- physical and radiological characterisation
 - dismantling activities
 - waste management activities
 - final radiological survey
 - final official release of the facility

Before and after....

Before and after....

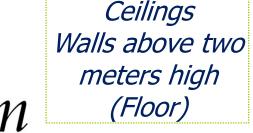

JRC-ISPRA clearance levels

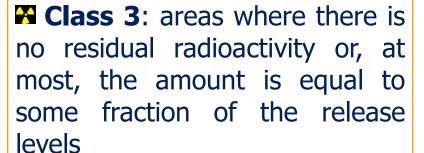
Italian safety authority (I.S.P.R.A.)

			-X $-$			
RN (i)	RN (i) Simbolo	Materiali metallici (c _N) Massa Superficie (Bq'g' ¹) (Bq'cm' ²)		Materiali cementizi (c _N) Massa Superficie (Bq'g' ¹) (Bq'cm' ²)	Altri materiali (c _N) Massa (Bq·g¹)	Altri materiali (c _{li})
Simbolo	Materiali metallici (c _{li})			Materiali ce	ementizi (c _{li})	Massa (Bq·g ⁻¹)
³H	Massa (Bq·g¹)	Superficie (Bq·cm ⁻²)	+	Massa (Bq·g ⁻¹)	Superficie (Bq·cm ⁻²)	1
¹⁴ C	. 1	10000		1	10000	1
²² Na	1	1000	<u> </u>	1	1000	0.1
³⁶ Cl	1	1	+	0.1	10	1
⁵⁴ Mn	1	100	\pm	1	100	0.1
⁵⁵ Fe	1	10	\pm	0.1	1	1
⁵⁹ Ni	1	1000	\pm	1	10000	1
im	1	1	\pm	1	10000	
	T		· -		1 - 1	T

Preliminary characterisation methodology (MARSSIM)

The cell unit of the matrix measures 1 m²


Preliminary characterisation methodology


Each room of the HG represented a Survey Unit (SUs) each of them subdivided into three different classes of measurements:

Class 1: areas which are potentially contaminated with values above the release levels

Class 2: areas where the radioactive residual contamination measured is below the release levels

Floors
Walls up to
two meters
high

Non Destructive Analyses

Berthold LB 124
SCINT
(Hot spots)

ISOCS (IGSS Canberra)
(Average residual activity)

Destructive Analyses

Samples analyses off-site (a, β & γ)
On dubious samples and hot spots
Samples analyses on-site (a, β & γ)
On unforeseen samples

Commissione europea

Analyses (NDA)

d walls up to 2 meters high every 1 m²

Non Destructive Analyses (NDA)

Scanning: surface of the floors and walls up to 2 meters high every 1 m²

Class 1: 100% of the surface

Class 2: 70% of the surface

Non Destructive Analyses (NDA)

Surface mode: the detector IGSS collimated for measurements of large surfaces (walls, ceilings)

O Localitation of the second o

Class 3: a measurement point every 20 m² ceiling, wall and, where applicable, floor

Class 1 & 2:76 measurements

Near Surface mode: the detector IGSS properly collimated for measurements with a distance of 30 cm from the measuring point

■ Identification of the DA points and assistance to sampling

Assistance to surfaces' final cleaning

M Difficulties found during site work

- 1. Building structural limitations: IGSS weights 100kg and is supported in a wheeled cart (stairs, differently levelled rooms, sloping floors, irregular soil, sandy or gravelled pavement, etc.)
- 2. Potentially contaminated soil or areas: the instrument had to be properly protected (cover the wheels, avoid spreading potential contamination)

Activities	Days	Start	End
Preparatory activities for licensing downgrading	323	14/11/2005	07/02/2007
Pre-decommissioning	<i>302</i>	08/02/2007	04/04/2008
Dismantling	<i>558</i>	07/04/2008	26/05/2010
Final survey	234	23/12/2009	15/11/2010

Some additional activities on NDAs were carried out

Some additional activities on Das:

30 → samples measured off-site

15 \rightarrow samples measured in-site as intercomparison 16 \rightarrow unforeseen samples measured in-site

Start 15/06/2010

13 weeks, 1365 RP working hours

End 14/09/2010

Bld.	SUs	m ² tot (floor, ceiling, walls)	N° Matrix Units (MU)	N° scanned MUs	% scanned MUs	% scanned m²
46	70	12594	6038	4481	74.2	35.6
46d	6	714	367	284	77.4	39.8
32b	14	1564	802	620	77.3	39.8
32c	4	280	156	109	69.9	38.9
	94	15152	7363	5494		

Start 21/06/2010

20 weeks 523 NDAs

End 09/11/2010

Bld.	SUs	m ² tot (floor, ceiling, walls)	N° NDA	Analysed m²	% analysed m ²
46	74	13849	332	6640	47.9
46d	10	1654	58	1160	70.1
32b	15	1564	38	760	48.6
32c	4	280	7	140	50.0
32e	1	64	3	64	100
46f	1	42	2	42	100
46g	1	<i>7</i> 8	4	<i>7</i> 8	100
46h	1	<i>7</i> 8	4	78	100
1	111	17609	523	8962	

Cost was originally foreseen 2 383 600 \in_{2010} (+10% contingencies). Final cost was 2 610 805 \in_{2010} .

	Activity	[€ ₂₀₁₀]	[%]
Underground Pneumatic Transfer Systems		277 926	11
Dis	mantling — Radioprotection - Transports	917 845	35
Plant characterization		<i>532 000</i>	20
Final Survey		314 455	12
Basic design and licensing		463 941	18
	Supply	104 638	4
n	TOTAL	2 610 805	100

Radioactive Wastes

	Amount estimated in Project Plan	Actual Waste produced
Waste [kg]	101 600	<i>74 615</i>
Clearable material [kg]	153 100	218 300

Personnel integrated doses

During the 5 years of activity, the integrated doses to the staff can be considered negligible compared to the workload.

Calibration verification by Monte-Carlo simulations of a total gamma counting tunnel for clearance purposes

Tommaso NALIN ¹, Alessandro PORTA ¹, Andrea A. M. RAVAZZANI ², Celso OSIMANI ²

¹ Politecnico di Milano - Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 – MILAN (ITALY)

² European Commission, Joint Research Centre, Nuclear Decommissioning Unit, Ispra – VARESE (ITALY)

Clearance Procedures at JRC-ISPRA

Cristina REQUEJO¹, Tommaso NALIN², Andrea A. M. Ravazzani¹, Celso OSIMANI¹

¹ European Commission, Joint Research Centre, Nuclear Decommissioning Unit, Ispra-Varese (ITALY)

² NUCLECO SpA, Via Anguillarese, 301 - 00123 S. M. di Galeria, Rome (ITALY)

P.08.03/04

Ispra, Italy 25 - 29 June 2012

Operational Issues in Radioactive Waste Management and Nuclear Decommissioning

An International Summer School | 4th Edition

Sum		

Venue Links

Photogallery

Downloads

100	
me	Inform

Syllabus

Lecturers

Programme

Registration

Edition 2012 2011 2010

2009

Chairs

Gérard Bruno

Celso Osimani

Marie Claire Cantone

Gianfranco Brunetti

Roger Coates

Daniele Giuffrida

Phil Metcalf

Thierry Schneider

Wolfgang Weiss

EC Joint Research Centre

Università degli Studi di Milano EC Joint Research Centre

IRPA

EC Joint Research Centre

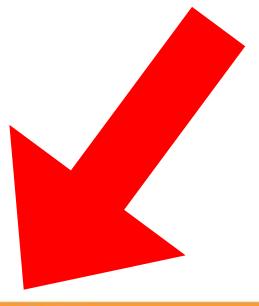
IRPA - Past President

CEPN, France

Federal Office for Radiation Protection (BfS)

International Atomic Energy Agency IAEA

Phil Cake


Radiation Protection Sector, Joint Research Centre

philip.cake@ec.europa.eu

Contacts

silvia.vanetti@ec.europa.eu

THANKS FOR YOUR ATTENTION!

daniele.giuffrida@ec.europa.eu

