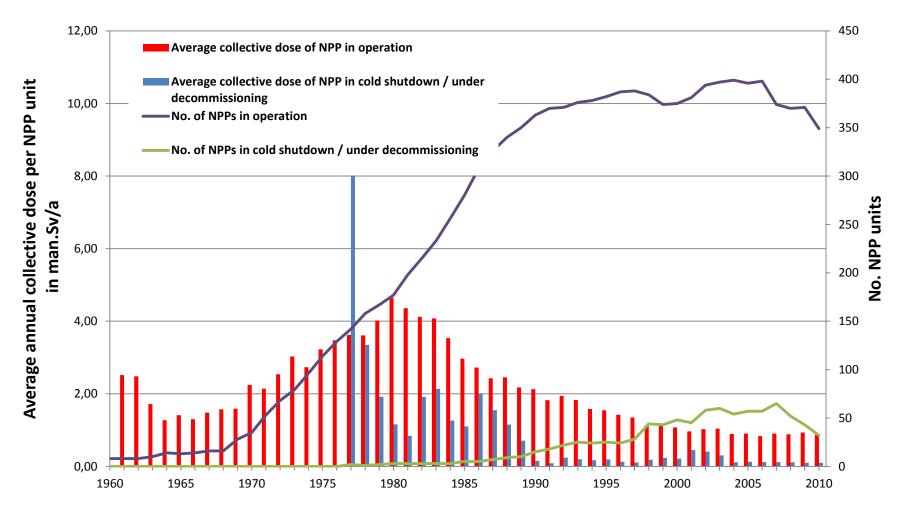


Radiation Protection during Decommissioning of Nuclear Facilities – Experiences and Challenges

IRPA Glasgow
13th International Congress of the
International Radiation Protection Association
13 – 18 May 2012

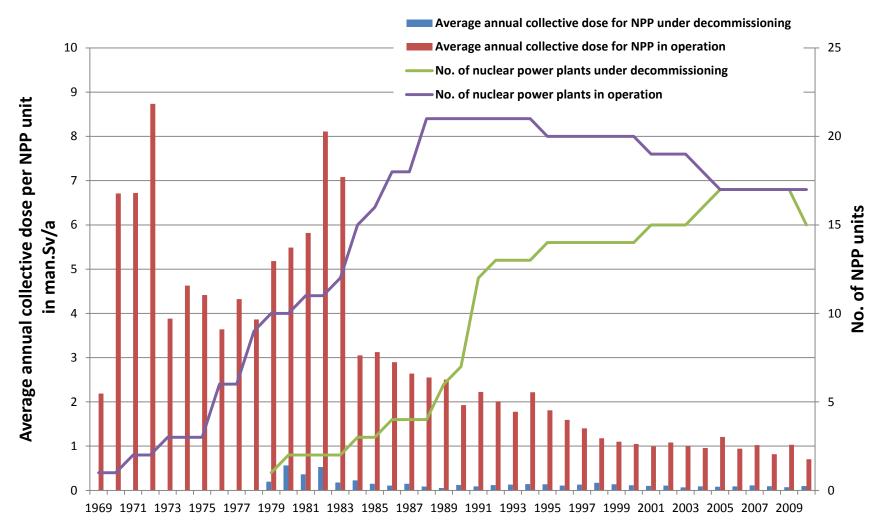
Technical Session TS6b: Decommissioning

Joerg Kaulard, Boris Brendeback Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH Germany

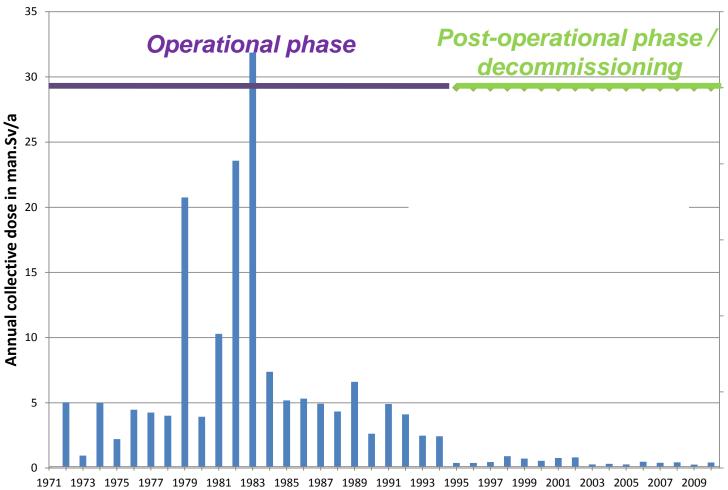


Content

- Overview on Occupational Exposure during Decommissioning of NPPs
- "Daily" Radiation Protection Challenges during Decommissioning
- Selected Experiences from Past and Current Projects
- Conclusions and "Future" Radiation Protection Challenges



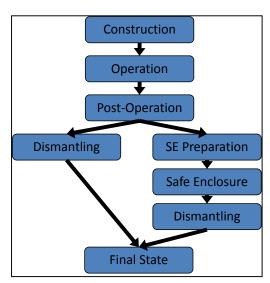
 Evolution of average annual collective effective dose, based on data of a majority of worldwide NPPs



Evolution of average annual collective effective dose for German NPPs

 Example on the evolution of the annual collective effective dose during life cycle of a NPP in operation and decommissioning

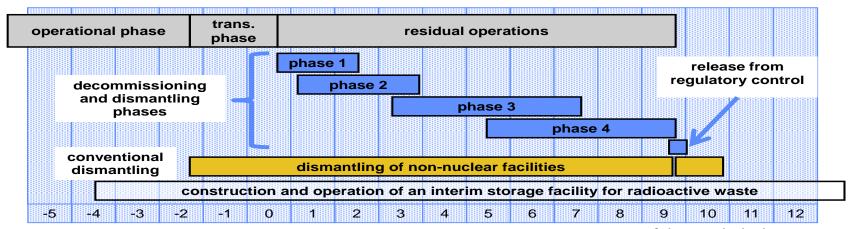
- Some key observations
 - (Average) Annual collective effective dose for NPPs in operation higher than for NPPs under decommissioning
 - depends inter alia on the reactor type and decommissioning concept / approach used
 - open question, whether this will change for modern reactor designs
 - Annual collective effective dose of a NPP under decommissioning varies from year to year and depends inter alia from
 - annual work load and project plan (structure & schedule) and progress of work
 - radiological conditions (e.g. contaminations, quality of system decontaminations)
 - Both, utility and contracted personnel involved
 - typically large number of contracted personnel active during whole year


"Daily" Radiation Protection Challenges during Decommissioning

- From a far distance "Decommissioning" = "extended Outage"
 - → no other "daily" challenges than during outage
- But from a closer distance aspects more relevant / new now requiring
 - flexible planning, preparation & work control and establishment of oversight on all processes under conduct
 - early involvement of RP professionals
 - well RP trained personnel to appropriately respond
 - → new "daily" challenges other than during outage, inter alia
 - continuous change of the facility status (technical, radiological relevant)
 - increased number of (long-lasting) work activities with interdependencies
 - access to workplaces, inaccessible during operation
 - new / improved techniques to conduct / speedup decommissioning activities
 - (need for) deviations from plans on the conduct of work
 - high volume of radioactive / non-radioactive material flow
 - replacement of technical barriers by administrative ones (incl. PPE)
 - → but: Decommissioning RP measures are mainly the same as for operation

Selected Experiences from Past and Current Projects

- Experience in general shows: radiation protection during decommissioning depends inter alia on
 - radiological situation of the nuclear facility
 - complexity of the nuclear facility
 - conceptual decisions as e.g.
 - decommissioning strategy
 - project structure / multiple phase approach
 - sequence of decommissioning activities
 - conduct of measures to reduce the radioactive inventory (e.g. full system decontamination)
 - cutting of component in-situ or ex-situ,
 especially removal of large components
 - pre-selection of techniques
 - waste management concept



Selected Experiences from Past and Current Projects Multiple Phase Approach

- Multiple phase approach
 - serves to divide large projects into smaller parts and to reduce complexity
 - allows stepwise planning of phases
 - first to be detailed
 - following less detailed until they will be commenced (and approved by regulatory body)
 - helps to stage the process of radiological characterization
 - information for later phases can be evaluated during current phases
 - requires a clear adjustment of the individual phases

Selected Experiences from Past and Current Projects Multiple Phase Approach

Example for a multiple phase approach

Selected Experiences from Past and Current Projects Removal of Large Components

- As an alternative to in-situ dismantling and cutting of large components
 - removal of the whole component as one piece
 - dismantling at a different position then the build-in position (ex-situ)
 - within the nuclear facility
 - at the site in a specific facility
 - off-site, e.g. by a service provider
 - advantages
 - optimization of the schedule
 - improvement of radiological conditions (not necessarily resulting in lower doses!!)
 - closely related to waste management strategies
- Special form of removal of large component
 - removal and long term storage before dismantling
 - "decay storage" to take benefit from radioactive decay

Selected Experiences from Past and Current Projects RP & Selection of Dismantling & Decontamination Techniques

Generic selection process

project strategies

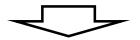
→ RP aspects on high level)

More strategic factors

and considerations

Potential decision factors, inter alia

- decommissioning strategy
- release of radioactive material
- radiological / conventional worker protection
- radiological conditions at the working place
- regulatory requirements
- know-how on the nuclear facility
- own experiences on the use of the technique
- technical work specification
- applicability / type of the technique, incl.
 - dismantling capacity
 - safety aspects
 - infrastructure / workspace needed
 - (de-) installation / maintenance time
- aspects of costs
- · rad. waste generation and disposal roots
 - · aspects of clearance



pre-selection

pre-selected techniques

assessment and comparison of techniques

set of techniques to be considered during detail work planning

Detailed RP consideration as part of the detailed work planning

Conclusions and ...

- In the past decommissioning of nuclear facilities was performed successfully (and safely) to reach defined end states
- "Daily" challenges require flexible planning & work control, management of many processes and an early involvement of RP professionals
- Recent experiences show inter alia
 - A multiple phase approach helps
 - to manage large and complex decommissioning projects and
 - to solve the problem of radiological characterizations during planning
 - Large component removal is a way to optimize project plans and to improve the radiological conditions for dismantling (but leads not necessarily to lower doses)
 - RP is considered on a high level in project strategies and in detail during work planning on base of selected techniques
 - worker protection will become ALARA during the detailed work planning
- Today, for (mostly) any technical question related to decommissioning
 - either standard solutions exist or can be adapted, or
 - can be individually developed for the specific situation

... and "Future Radiation Protection Challenges"

- In general terms, RP challenges seem to be under control for most situations, except for accident situations (→ special challenge to remove spent fuel)
- "Future Radiation Protection Challenges" may relate to
 - the radiological characterization (before approval by regulatory bodies) which
 - sets the base for the preparation of decommissioning plans and
 - forms the basis the waste and material management strategies
 as
 - it's difficult to decide on the appropriate level of detail
 - to gain the information needed
 - the final radiological survey, which demonstrates that the final end state was reached as
 - especially in case of sites remaining contamination either of natural origin strongly vary or of artificial origin exist, both resulting in practical problems for a background identification and reduction
 - → further need on experience feedback among RP experts, e.g. by means of ISOE, IAEA / NEA

Thank You for Your Attention!