Comparison of Primary Doses Obtained in Three 6 MV Photon Beams Using a Small Attenuator

Christoph Trauernicht Groote Schuur Hospital & University of Cape Town

Background

- Method is based on:
 - A method of measuring the primary dose component in high-energy photon beams
 - Paul Nizin & Kenneth Kase
 - Med. Phys. 15(5), Sep/Oct 1988
 - Determination of primary dose in Co-60 gamma beam using a small attenuator
 - Paul Nizin & Kenneth Kase
 - Med. Phys. 17(1), Jan/ Feb 1990

Total Dose = Primary + Scattered Components

- Primary dose obtained by extrapolation to zero field size – problematic esp. for high energy beams
- Uncertainties in primary dose from 3% 10%
- This method: no extrapolation necessary

Three Linear Accelerators

Varian 2300 Clinac

Siemens Mevatron KD2

Index i refers to CAX attenuator

Properties of attenuator: (i) Perturbation of scatter dose negligible with attenuator in the beam (ii) radius of attenuator > lateral electron range

 $D_T^i = D_p^i + D_s$

Index i refers to CAX attenuator

Properties of attenuator: (i) Perturbation of scatter dose negligible with attenuator in the beam (ii) radius of attenuator > lateral electron range

(1);

For a specified depth d in a phantom, the ratio of the primary components is independent of field size, thus:

$$\mathbf{D}_{\mathrm{p}} / \mathbf{D}_{\mathrm{p}}^{\mathrm{i}} = \mathrm{constant} = \mathbf{C}_{\mathrm{D}}$$
 (3)

 $D_{p}(d) = [1 - 1/C_{D}(d)]^{-1} \cdot [D_{T}(d,S) - D_{T}^{i}(d,S)]$

where d refers to depth, h refers to the attenuator and Δ is a small thickness of phantom

All these quantities are measurable under narrow-beam conditions

Primary dose can be obtained by four measurements of ionization in narrow beam geometry and two measurements of dose in a large beam in a phantom

$D_p(d) = [1 - 1/C_D(d)]^{-1} \cdot [D_T(d,S) - D_T^i(d,S)]$

Doses with and without attenuator in the beam at depth d in water

Measurements at 2 cm intervals up to d = 15 cm

Dose: D_T & D_Tⁱ

 Measured at different depths in a water tank in a 10 cm X 10 cm field with a 0.016 cc PinPoint chamber or 0.0067cc "mini ionisation chamber"

1 cm & 2 cm thick
lead attenuators
r = 1 cm each
Attenuator at least
20 cm above water
surface

Measurement Setup

	Philips SL 75-5	Siemens Mevatron KD2	Varian 2300 Clinac
Total Dose [Gy/100 MU]	1.00	1.00	1.00
1 cm Pb attenuator [Gy/100 MU]	0.528	0.528	0.515
2 cm Pb attenuator [Gy/100 MU]	0.309	0.302	0.309

0.6 cc Farmer chamber

Philips SL75-5

Siemens Mevatron KD2

Varian 2300 Clinac

Results:

- Large uncertainties when using sets of ionization measurements
- Fit an exponential function through the points

$$C_{D}(d) = \frac{\ln\left[\frac{I(d + \Delta)}{I(d)}\right]}{\ln\left[\frac{I(h + d + \Delta)}{I(h + d)}\right]} \cdot \frac{I(d)}{I(h + d)}$$

Results:

	Philips SL 75-5	Siemens Mevatron KD2	Varian 2300 Clinac
C _D (1 cm Pb), using 1.5 cm and 2 cm depths	2.042	2.014	2.078
C _D (2 cm Pb), using 1.5 cm and 2 cm depths	3.765	3.864	3.951

The fractional uncertainty in each measurement was determined by taking 15 consecutive measurements and dividing the standard deviation by the mean.

$$D_p(d) = [1 - 1/C_D(d)]^{-1} \cdot [D_T(d,S) - D_T^i(d,S)]$$

Results: Primary Dose

	Philips SL 75-5	Siemens Mevatron KD2	Varian 2300 Clinac
Primary Dose [Gy/100 MU] 1 cm Pb Attenuator	0.925 ± 4.5 %	0.938 ± 4.8 %	0.935 ± 3.3 %
Primary Dose [Gy/100 MU] 2 cm Pb Attenuator	0.941 ± 4.8 %	0.942 ± 5.2 %	0.943 ± 3.5 %

Results for 1 cm Pb Attenuator

Total and primary doses

Fit an exponential to the primary dose up to 15 cm depth to get the primary linear attenuation coefficient

Primary Linear Attenuation Coefficient

	Philips SL 75-5	Siemens Mevatron KD2	Varian 2300 Clinac
μ (1 cm Pb) [cm ⁻¹]	0.0447 ± 0.0007	0.0436 ± 0.0008	0.0458 ± 0.0012
μ (2 cm Pb) [cm ⁻¹]	0.0444 ± 0.0006	0.0436 ± 0.0008	0.0458 ± 0.0008

Discussion: Primary Dose

	Philips SL 75-5	Siemens Mevatron KD2	Varian 2300 Clinac
Primary Dose (this work) [Gy/100 MU]	0.925 & 0.941	0.938 & 0.942	0.935 & 0.943
In use [Gy/100 MU]	0.935	0.935	0.926
Monte Carlo (Rice & Chin, 1990) [Gy/100 MU]		0.928 ± 0.013	

Discussion: Primary Linear Attenuation Coefficient

	Philips SL 75-5	Siemens Mevatron KD2	Varian 2300 Clinac
μ (1 cm Pb) [cm⁻¹]	0.0447 ± 0.0007	0.0436 ± 0.0008	0.0458 ± 0.0012
μ (2 cm Pb) [cm ⁻¹]	0.0444 ± 0.0006	0.0436 ± 0.0008	0.0458 ± 0.0008
Narrow Beam Attenuation Measurements [cm ⁻¹]	0.0460 ± 0.0001	0.0477 ± 0.0003	0.0482 ± 0.0002
Pistorius (1991) CAPDD Kerma Model [cm ⁻¹]	0.0445 ± 0.0001	0.0445 ± 0.0001	0.0457 ± 0.0001
TMR extrapolation to zero field size [cm ⁻¹]	0.0469 ± 0.0006	0.0465 ± 0.0001	0.0477 ± 0.0002

Conclusion:

 This method suggests a feasible way of measuring the primary dose component of the radiation dose, as well as obtaining a value for the primary linear attenuation coefficient.

References:

-A method of measuring the primary dose component in high-energy photon beams

Paul Nizin & Kenneth Kase, Med. Phys. 15(5), Sep/Oct 1988

-Determination of primary dose in Co-60 gamma beam using a small attenuator

Paul Nizin & Kenneth Kase, Med. Phys. 17(1), Jan/ Feb 1990

- -B Bjarngard & P Petti, Phys. Med. Biol. 33, 21 (1988)
- -P Kijewski et al., Med. Phys. 13, 74 (1986)
- -M Day, Br. J. Radiol. Suppl. 17, 131 (1983)
- -R Rice & L Chin, Phys. Med. Biol. 35, 3 (1990)
- -JR Taylor: An Introduction to Error Analysis (1982)
- S Pistorius: PhD Thesis (1991)