Comparisons of Carrington-Class Solar Particle Event Radiation Exposure Estimates utilizing the CAM, CAF, MAX, and FAX Human Body Models

> Anne M. Adamczyk*, Charles M. Werneth, & Lawrence W. Townsend

University of Tennessee, Knoxville, Tennessee, USA Department of Nuclear Engineering

*International Radiation Protection Association Young Professional Prize Nominee

13th International Congress of the International Radiation Protection Association Glasgow, Scotland TS 10a: Existing exposure situations due to NORM and natural radiation May 14, 2012

> Global Mosaic of Mars – Syrtis Major Region NASA / GSFC

Introduction

- Solar Particle Event (SPE) radiation estimates are made for male and female astronauts on the surface of Mars, comparable to the Carrington event of 1859.
- Exposures are estimated for aluminum shield areal densities similar to a spacesuit, surface lander, and permanent habitat at various altitudes.
- Exposure related quantities relevant for comparisons to NASA permissible exposure limits (PELs) are calculated using NASA's On-Line Tool for the Assessment of Radiation in Space (OLTARIS), <u>https://oltaris.larc.nasa.gov/</u>.
- Comparisons of organ dose and effective dose are made between two types of human body models, since differences in the mass and location of various organs will affect radiation exposure quantities.

Introduction

Environment

- The Carrington event of 1859 produced the largest estimated omni-directional integral fluence of protons >30 MeV (1.88×10^{10} cm⁻²).
- The spectral character of the large, very hard, space age February 1956 SPE was used in combination with the fluence historical record of the Carrington event.

Results

Proton fluence spectrum for the Band function parameterization of the February 1956 event normalized to the Carrington event.

Greater than 30 MeV proton fluence events in the interval 1561-1950. Data from McCracken et al., J. Geophys. Res. 106 (2001) 21585.

Particle Transport

The incident SPE proton spectrum is transported through:

1. The Mars pure CO_2 atmosphere (up to 300 g cm⁻²).

A spherically symmetric model is assumed using three areal densities:

- Low density (16 g cm⁻²) at the mean surface elevation, 0 km.
- High density (22 g cm⁻²) at the mean surface elevation, 0 km.
- Low density (7 g cm⁻²) at an altitude of 8 km.
- 2. The appropriate hemispherical aluminum shielding thickness (0.3, 5, or 40 g cm⁻²).

3. The body thickness distribution of the organ/tissue of interest, using the space radiation transport code HZETRN (High charge (Z) and Energy TRaNsport).

ANNE MARIE

Introduction

Results C

Conclusions

Human Body Models

ADAMCZYK

CAM / CAF

- Mathematical models based on quadric surfaces.
- Developed in 1973 (1992).
- Matched to USAF personnel.

MAX / FAX

- Voxel models based on CT scans of human cadavers.
- Developed in 2003 (2004).
- Matched to ICRP reference male and female.

Introduction	Environment	Human Body Models	Results	Conclusions							
0.3 g cm ⁻² Aluminum Shield (Spacesuit)											
Low density atmosphere at 8 km											
300	205 200	_									

Introduction

100

Human Body Models

Results C

Conclusions

Mars Daily Global Image NASA / JPL 1999

			Effe	ctive I	Dose (cSv)			
	0.3 g	cm^{-2}	Al Shield	5 g c	m^{-2} A	Al Shield	$40 \text{ g cm}^{-2} \text{ Al Shield}$		
Human	Elev	vation	(km) &	Elev	ation	(km) &	Elevation (km) &		
Body	Atmo	$\operatorname{osphere}$	e Density	Atmosphere Density			Atmosphere Density		
Models	$0 \mathrm{km}$	$0 \mathrm{km}$	$8 \mathrm{km}$	0 km	$0 \mathrm{km}$	$8 \mathrm{km}$	$0 \mathrm{km}$	$0 \mathrm{km}$	$8 \mathrm{km}$
	High	Low	Low	High	Low	Low	High	Low	Low
CAM	106	134	192	98	121	167	62	72	87
CAF	107	135	192	99	122	167	62	72	88
MAX	102	129	182	94	116	158	59	69	84
FAX	102	129	181	94	116	158	60	69	84

		Effect	tive Dose		
1 m	Age (years)	(cSv)			
		Male	Female		
	25	52	37		
	30	62	47		
	35	72	55		
	40	80	62		
	45	95	75		
	50	115	92		
	55	147	112		

NASA Career PELs for astronauts on a mission which does not exceed one year.

		Ag	e ranges	at first	$t \exp \sigma$	sure (yea	rs)		
		for wh	ich effecti	ive dos	e limit	s are exe	ceeded		
	0.3 g	cm^{-2} A	Al Shield	$5 \mathrm{g} \mathrm{cm}$	$m^{-2} A$	l Shield	40 g c	cm^{-2} A	l Shield
Human	Elev	vation ((km) &	Elev	ation (km) &	Elev	ation (km) &
Body	Atmo	sphere	Density	Atmosphere Density			Atmosphere Density		
Models	$0 \mathrm{km}$	$0 \mathrm{km}$	$8 \mathrm{km}$	0 km	$0 \mathrm{km}$	$8 \mathrm{km}$	$0 \mathrm{km}$	$0 \mathrm{km}$	$8 \mathrm{km}$
	High	Low	Low	High	Low	Low	High	Low	Low
CAM	25 - 45	25 - 50	All	25 - 45	25 - 50	All	25	25-30	25- 40
CAF	25 - 50	All	All	25 - 50	All	All	25 - 35	25-40	25-45
MAX	25 - 45	25 - 50	All	25 - 40	25 - 50	All	25	25-30	25- 40
FAX	25 - 50	All	All	25 - 50	All	All	25 - 35	25 - 40	25-45

Conclusions

- The Mars atmosphere offers enough additional shielding to skew the differences between the two sets of human body models and the two types of phantoms for each gender.
- The resulting organ doses were found to generally exceed NASA 30 day PELs. More specifically, the BFO and heart doses substantially exceed the NASA 30 day PELs.
- Male and female astronauts older than 40 and 45 years, respectively, will not exceed effective dose NASA PELs when located in a permanent habitat.
- The conventional amount of shielding materials used in the construction of spacesuits and surface landers will not provide the radiation protection needed for an SPE comparable to the Carrington event of 1859. Radiation mitigation strategies will need to be employed to reduce the exposures to more acceptable levels.

ANNE MARIE ADAMCZYK Victoria Crater NASA / JPL 2006 For more information please contact:

Anne Marie Adamczyk, Ph.D.

Postdoctoral Research Associate University of Tennessee, Knoxville Department of Nuclear Engineering

Located At: NASA Langley Research Center MS 188E, 2 West Reid Street Hampton, VA 23681-2199, USA Anne.M.Adamczyk@nasa.gov

Galactic Cosmic Ray (GCR)

- Made up of heavy and light charged ions.
- Modulated by solar wind.
- Omni-present low intensity background radiation.
- The high energy particles have great penetrating power through shield materials, which makes GCRs difficult to shield.
- The 2004 Badhwar-O'Neill model is used to define the 1977 solar minimum GCR environment at 1 AU.

Solar Particle Event (SPE)

- SPEs are isolated events and consist of primarily protons.
- Large SPEs are rare, but can be lethal if not enough shielding is provided.
- Shielding mass is effective at reducing the intensity of the SPE environment.
- The King model of the August 1972 SPE is used, since it is the DSNE reference environment.
- SPEs vary in intensity and spectral shape, and are time dependent.

Environment

The Band function parameterization:

- A double power law in proton rigidity.
- Yields more reliable dose estimates than other commonly used proton spectral fitting methodologies.
- Based on actual solar proton data over the entire proton energy spectrum.
- More specifically, it is based on low and medium energy satellite data, as well as high energy ground level enhancement (GLE) data, out to ~10 GeV, measured from neutron monitors on Earth's surface.

Environment

The Band function parameterization is given by

$$\Phi(>R) = \begin{cases} \Lambda R^{-\gamma_1} \exp\left(-\frac{R}{R_0}\right), \\ for \ R \le (\gamma_2 - \gamma_1) R_0 \\ \Lambda R^{-\gamma_2} \left[(\gamma_2 - \gamma_1) R_0 \right]^{(\gamma_2 - \gamma_1)} \exp(\gamma_1 - \gamma_2), \\ for \ R \ge (\gamma_2 - \gamma_1) R_0 \end{cases}$$

where Φ is the proton fluence.

- *R* is the particle rigidity (momentum per unit charge).
- Λ is the total integral fluence.
- γ_1, γ_2 are spectral indices.

T ANNE MARII ADAMCZYK

OLTARIS

- OLTARIS is a World Wide Web based tool that can be used to assess the effects of space radiation on humans and electronics in space mission architectural elements, such as spacecraft, habitats, rovers, and spacesuits.
- Users can input their own complicated geometry models into OLTARIS for analysis.
- In order to calculate the radiation environment at a particular location in a habitat using OLTARIS, the habitat shielding model must be ray-traced.
- Ray-tracing is performed by dividing the volume surrounding the dose point into a number of equal solid angle elements and calculating the thickness of each type of shielding along a ray through a solid angle element.

Computations performed with OLTARIS utilize the following modules:

ENVIRONMENTAL MODULE

- Where the external radiation environment is defined.
- User can choose from six different types of environments free space GCR, free space SPE, lunar surface GCR, lunar surface SPE, Earth orbit, or Jupiter's icy moon Europa.
- Albedo neutrons are not included in the current OLTARIS lunar environment modules.

TRANSPORT MODULE

- Used to propagate particles of an ambient space radiation environment, chosen by the user, through a combination of a vehicle, shielding, and/or tissue.
- Uses the deterministic space radiation transport code HZETRN, which has been used extensively for both GCR and SPE dosimetric calculations in complex geometries.

REPSONSE MODULE

ANNE MARIE ADAMCZYK

- Allows users to calculate dose, dose equivalent, linear energy transfer, and/or whole body effective dose.
- If the effective dose response function is chosen, organ averaged dose equivalent values are also produced for the organs and tissue types utilized in the effective dose calculation.
- For effective and organ averaged dose equivalent calculations, the user can select from four human body models CAM, CAF, MAX, or FAX.

Transport Methods

- Transport methods are based on the latest version of the deterministic space radiation transport code HZETRN (High change (Z) and Energy TRaNsport), namely HZETRN2010.
- HZETRN was developed at NASA Langley Research Center and accurately models the transport of all incident charged ions and their nuclear reaction products.
- For this application, only incident protons are transported, as well as their nuclear reaction products, namely, protons, neutrons, deuterons, tritons, helions, and alpha particles.
- The transport algorithms of HZETRN provide approximate solutions to the time independent linear Boltzmann transport equation and utilize the straight ahead approximation and the continuous slowing down approximation.
- An advantage of the HZETRN transport algorithm is its computational speed. Consequently, it has been utilized extensively for both GCR and SPE dosimetric calculations using complex geometries.

Organ Dose

• Organ Dose (D) is calculated by

$D[cGy - Eq] = D[cGy] \times RBE$

where D[cGy] is the organ dose given in units of cGy.

- RBE is the Relative Biological Effectiveness value,
 which accounts for the ability of some types of radiations to produce more short term and non-cancer damage than others for the same dose.
- An *RBE* value of 1.5 was assumed, as recommended by NCRP Report 132.

ANNE MARIE ADAMCZYK

Exposure Limits

- NASA Standard 3001, "NASA Space Flight Human Standard, Volume 1: Crew Health " defines career cancer risk limits for space radiation exposure and dose limits for non-cancer effects.
- The permissible exposure limit for cancer risk is defined such that an astronaut's Risk of Exposure Induced Death (REID) must not exceed three percent. NASA must assure that this risk is not exceeded at a ninety-five percent confidence level.
- NASA is required to insure that the principle of ALARA (As Low As Reasonably Achievable) is followed. This requirement ensures that these limits are not treated as "tolerance values". CxP 70024 states that, "the protection from radiation exposure is ALARA when the expenditure of further resources would be unwarranted by the reduction in exposure that would be achieved".

Skin Dose (cGy-Eq)

Organ	30 day limit (cGy-Eq)	1 Year Limit (cGy-Eq)	Career (cGy-Eq)
Skin	150	300	400
•			

	Skin Dose (cGy-Eq)											
	0.3 g	cm^{-2}	Al Shield	$5 \mathrm{g} \mathrm{c}$	m^{-2} A	l Shield	40 g cm^{-2} Al Shield					
Human	Elevation (km) &			Elev	ration	(km) &	Elev	ration	(km) &			
Body	Atmosphere Density			Atmo	sphere	e Density	Atmosphere Density					
Models	0 km	$0 \mathrm{km}$	$8 \mathrm{km}$	0 km	$0 \mathrm{km}$	$8 \mathrm{km}$	$0 \mathrm{km}$	$0 \mathrm{km}$	$8 \mathrm{km}$			
	High	Low	Low	High	Low	Low	High	Low	Low			
CAM	118	161	268	102	137	214	50	62	81			
CAF	119	162	270	103	138	215	51	62	82			
MAX	122	169	285	105	142	224	51	63	83			
FAX	123	169	286	106	143	225	51	63	84			

Lens Dose (cGy-Eq)

Organ	30 day limit	1 Year Limit	Career
	(cGy-Eq)	(cGy-Eq)	(cGy-Eq)
Lens	100	200	400

			Len	s Dose	e (cGy-	-Eq)			
	0.3 g	cm^{-2}	Al Shield	5 g cm^{-2} Al Shield			40 g cm^{-2} Al Shield		
Human	Elevation (km) &			Elev	ration	(km) &	Elev	ration	(km) &
Body	Atmosphere Density			Atmo	sphere	e Density	Atmosphere Density		
Models	0 km	$0 \mathrm{km}$	$8 \mathrm{km}$	0 km	$0 \mathrm{km}$	$8 \mathrm{km}$	0 km	$0 \mathrm{km}$	8 km
	High	Low	Low	High	Low	Low	High	Low	Low
CAM	116	158	251	102	135	206	52	63	82
CAF	117	158	254	103	137	209	52	64	83
MAX	114	154	246	100	132	201	51	62	81
FAX	116	157	251	101	135	205	51	63	82

BFO Dose	Organ	30 day limit	1 Year Limit	Career
		(cGy-Eq)	(cGy-Eq)	(cGy-Eq)
(CGV-Eq)	BFO	25	50	N/A
· · · · ·				

	BFO Dose (cGy-Eq)											
	0.3 g	cm^{-2}	Al Shield	5 g cm^{-2} Al Shield			40 g cm^{-2} Al Shield					
Human	Elevation (km) &			Elev	ration	(km) &	Elev	ation	(km) &			
Body	Atmosphere Density			Atmo	sphere	e Density	Atmosphere Density					
Models	0 km	$0 \mathrm{km}$	$8 \mathrm{km}$	0 km	$0 \mathrm{km}$	$8 \mathrm{km}$	0 km	$0 \mathrm{km}$	8 km			
	High	Low	Low	High	Low	Low	High	Low	Low			
CAM	94	123	184	84	108	157	45	54	71			
CAF	96	126	188	86	111	160	46	55	72			
MAX	88	114	167	79	101	145	43	52	67			
FAX	92	120	178	83	106	153	44	53	69			

CNS Dose	Organ	30 day limit	1 Year Limit	Career
		(cGy-Eq)	(cGy-Eq)	(cGy-Eq)
(CGV-Eq)	CNS	50	100	150
· · · · ·				

	CNS Dose (cGy-Eq)											
	0.3 g	cm^{-2}	Al Shield	5 g cm^{-2} Al Shield			40 g cm^{-2} Al Shield					
Human	Elevation (km) &			Elev	ration	(km) &	Elevation (km) &					
Body	Atmosphere Density			Atmo	sphere	e Density	Atmosphere Density					
Models	0 km	$0 \mathrm{km}$	$8 \mathrm{km}$	0 km	0 km	$8 \mathrm{km}$	0 km	$0 \mathrm{km}$	8 km			
	High	Low	Low	High	Low	Low	High	Low	Low			
CAM	101	133	199	91	117	170	48	58	75			
CAF	103	137	206	93	121	176	49	59	76			
MAX	100	130	194	89	115	166	47	57	73			
FAX	101	133	200	91	118	171	48	58	75			

Heart Dose (cGy-Eq)

Organ	30 day limit (cGy-Eq)	1 Year Limit (cGy-Eq)	Career (cGy-Eq)	
Heart	25	50	100	

Heart Dose $(cGy-Eq)$												
	$0.3~{ m g}$	cm^{-2}	Al Shield	$5 \mathrm{g} \mathrm{c}$	m^{-2} A	l Shield	40 g o	cm^{-2} .	Al Shield			
Human	Elevation (km) &			Elevation (km) &		Elevation (km) &						
Body	Atmosphere Density			Atmosphere Density		Atmosphere Density						
Models	$0 \mathrm{km}$	$0 \mathrm{km}$	$8 \mathrm{km}$	$0 \mathrm{km}$	$0 \mathrm{km}$	$8 \mathrm{km}$	$0 \mathrm{km}$	$0 \mathrm{km}$	$8 \mathrm{km}$			
	High	Low	Low	High	Low	Low	High	Low	Low			
CAM	89	115	167	80	102	145	43	52	68			
CAF	91	118	172	82	104	149	44	53	69			
MAX	91	118	172	81	104	149	44	53	69			
FAX	89	115	167	80	102	146	43	52	68			

0.3 g cm⁻² Aluminum Shield (Spacesuit) Low density atmosphere at 8 km

Extra Slides

5 g cm⁻² Aluminum Shield (Surface Lander)

Low density atmosphere at 8 km

ANNE MARIE ADAMCZYK **Extra Slides**

40 g cm⁻² Aluminum Shield (Permanent Habitat) Low density atmosphere at 8 km

ANNE MARIE ADAMCZYK