Measurement of Radio-nuclides in Radioactive aerosols produced in a 120-GeV Proton Target Station

<u>O S. SEKIMOTO¹</u>, H. YASHIMA¹, S. FUKUTANI¹, S. SHIBATA¹, H. MATSUMURA², A. TOYODA², K. OISHI³, T. NAKAMURA³, N. MATSUDA⁴, Y. KASUGAI⁴, Y. SAKAMOTO⁴, H. NAKASHIMA⁴, D. BOEHNLEIN⁵, G. LAUTEN⁵, A. LEVELING⁵, N. MOKHOV⁵, K. VAZIRI⁵

¹ Research Reactor Institute, Kyoto University (KURRI)
 ² High Energy Accelerator Research Organization (KEK)
 ³ Shimizu Corporation (SMZ), ⁴ Japan Atomic Energy Agency (JAEA)
 ⁵ Fermi National Accelerator Laboratory (FNAL)

JASMIN Collaboration (Japanese-<u>A</u>merican <u>S</u>tudy of <u>M</u>uon Interactions and <u>N</u>eutron detection) project T-993, T-994

Measurement of Radio-nuclides in Radioactive aerosols produced in a 120-GeV Proton Target Station

-Outline-

- 1. Introduction "Radioactive aerosols in accelerator target room"
- 2. Motivation "Why we focus on radio-nuclides and P-32"
- 3. Experimental procedure "Aerosol-sampling, Measurement of P-32"
- 4. Results "Activity levels of P-32 and other radio-nuclides"
- 5. Discussion "Dose of P-32 and other radionuclides, Source materials"6. Summary

JASMIN Collaboration (Japanese-<u>A</u>merican <u>S</u>tudy of <u>M</u>uon Interactions and <u>N</u>eutron detection) project T-993, T-994

Introduction

Radioactive aerosols are produced by
-direct activation by the beam and its secondaries
-the subsequent attachment of the various radio-nuclides produced by
other nuclear spallation reactions in the target, in the instruments around the
target, <u>air</u> and <u>other sources</u>.

In terms of radiation control,

it is important to know **the radio-nuclide composition** of the **radioactive aerosols** in an accelerator target area.

Introduction

Motivation -1-

Especially, in **ultra high energy** proton target station, the **radio-nuclide composition** of radioactive aerosols and their **source materials** have scarcely been studied previously.

In order to control external and internal exposure of the workers in a high-energy accelerator target area, it is important to measure the produced **amount of radio-nuclides** in the **radioactive aerosols**.

Motivation -2- (Why we focus on P-32)

The pure beta emitters such as P-32 as well as gamma rays emitting nuclides are also important.

³²P (T_{1/2} = 14.26 d, no-γ)
-pure beta emitter
→cannot be determined
by conventional method
used in radiation control

-from argon (Ar) in air
→ close to Ar
→ P-32 from Ar >> trace

In spite of **target materials**, it is essential to determine **activity levels** of ³²P for the radiation control purposes, especially for evaluating the internal exposure of the workers.

Production of ³²P in target area have not been studied previously, because of difficulties in detecting and characterizing pure beta-emitters compared to gamma-ray emitters. Motivation -2- (Why we focus on P-32)

The pure beta emitters such as P-32 as well as gamma rays emitting nuclides are also important.

³²P (T_{1/2} = 14.26 d, no-γ)
-pure beta emitter
→ cannot be determined
by conventional method
used in radiation control

-from argon (Ar) in air \rightarrow close to Ar

 \rightarrow P-32 from Ar >> trace

Ar 34 Ar 35 Ar 36 Ar 37 Ar 38 Ar 39 Ar 40 1.78 s 0.0632 844 ms 0.3365 35.0 d 269 a 99.6003 B-0.6 or 5 8* 5.0. no-Y no g B+ 4.9. 054 σn. a 1080 σn. p 37 666; 3129... on a 0, 0 600 y1219; (1763...) 0- - < 1.0015 8.0 9n, e <0.29 or 0.64 CI 33 CI 34 CI 35 CI 36 CI 37 CI 38 CI 39 2.51 s 3.0 · 10 a 24.24 37.18 m 32.0 m 1.53 s 5.7656 m β⁺ 4.5... γ (841; 1966; BT 1.9; 3.4. 13.78 er ~8.E-5 p 0.44 or a 0.00059 in, 37 4.9 1267; 250; 17.45 79.1 n.p.0.046 σ0. 2867....] æ y 2168; 1642... 1517 S 33 S 32 S 34 S 35 S 36 S 37 S 38 94.99 0.75 4.25 87.5 d 0.01 5.0 m 2.83 h or 0.46 σn α 0.12 σn p 0.002 r 0.55 5 0.2 8" 1.8; 4.9 ... BT 1.0; 2.9... m. n <0.0005 a 0.24 <mark>/</mark>25 no y 3103. y 1942; 1746. P 33 P 31 P 32 P 34 P 35 P 36 P 37 100 14.26 d 25.34 d 12.4 s 47.4 s 5.6 s 2.31 s 8-87 0.2 v 646; 1583; 2264.... 67 1.7 B 5.4 5-2.3. 3291; 903; 638; 2540. or 0.17 no - Y y 2127. 1572. 10 7

This work

What kinds of radionuclides were produced in Anti-proton target station?

- # Measuring the beta emitting radio-nuclide ³²P
- # Determination of the activity levels # Estimation of internal dose
- # Discussion on their source material

Experimental (Aerosol-sampling)

Gas/ aerosol-sampling device → Filter holder —

The radioactive aerosols, (which were produced from air, target material, or the other instruments,) were withdrawn by a pump and collected on <u>filter paper</u>.

gamma-ray spectrometry chemical treatment (to separate P)

Sampling condition: # 9.5 L of air / min # 26 h-sampling (≈ 15 m³ of air in total)

Experimental (Chemical treatment to separate P& LSC)

The phosphorus compound $MgNH_4PO_4 \bullet 6H_2O$ was extracted from the filter paper by a chemical separation procedure^{*}. (@Hot laboratory in KURRI)

Beta-ray spectra from liquid scintillation counter (LSC)

*W. T. Mullins and G. W. Leddicotte, "The Radiochemistry of Phosphorus" National Academy of Science (1962)

_ \	Bq)	ivity	Ac		half-life (d)	Nuclide
Chemistry+LSC		± 3	6		14.26	P-32
		± 6	0	8	53.29	Be-7
	1	± 0)	2	950.095	Na-22
	2	± 0	.4	3	83.82	Sc-46
		± 1	1		15.97	V-48
		± 3	0	;	27.7	Cr-51
		± 2	4		5.6	Mn-52
 Gamma-ray spectrometry 		± 1	5		312.2	Mn-54
		± 1	4	:	77.26	Co-56
		± 1	4	ĺ	271.79	Co-57
		± 2	0	1	70.86	Co-58
	3	± 0	.4	2	44.503	Fe-59
	1	± 0	.6	1	1924.28	Co-60
	1	± 0	.4	1	119.64	Se-75
	09	± 0	4	0.4	106.6	Y-88
		± 1	1		a 249.9	Ag-110m
	2	± 0	.1	2	94	Os-185
	8	± 0	.8	6	186.09	Au-195
		± 2	0	1	6.2	Au-196
)	± 4	0	28	2.696	Au-198

Results (At the time just after aerosol-sampling from target room)

					(
Nuclide	half-life (d)	A	ctivi	ty (Bq)	<mark>μ</mark> Sv∕h	Ratio (%)
P-32	14.26	26		3	0.0071	2.5
Be-7	53.29	880	±	6	0.0039	1.4
Na-22	950.095	2.0	±	0.1	0.0002	0.1
Sc-46	83.82	8.4	±	0.2	0.0046	1.6
V-48	15.97	31	±	1	0.0060	2.1
Cr-51	27.7	80	±	3	0.0002	0.1
Mn-52	5.6	34	±	2	0.0038	1.4
Mn-54	312.2	15	±	1	0.0018	0.6
Co-56	77.26	34	±	1	0.0182	6.5
Co-57	271.79	64	±	1	0.0051	1.8
Co-58	70.86	110	±	2	0.0185	6.6
Fe-59	44.503	4.4	±	0.3	0.0014	0.5
Co-60	1924.28	1.6	±	0.1	0.0040	1.4
Se-75	119.64	1.4	±	0.1	0.0001	0.1
Y-88	106.6	0.44	±	0.09	0.0002	0.1
Ag-110m	249.9	11	±	1	0.0106	3.8
Os-185	94	2.1	±	0.2	0.0003	0.1
Au-195	186.09	6.8	±	0.8	0.0009	0.3
Au-196	6.2	160	±	2	0.0000	0.0
Au-198	2.696	2800	±	40	0.1926	68.9

Discussion: Estimation of internal dose* (ICRP publication 72)

Aggregate dose: 0.28 μSv/h

*Inhalation dose coefficients: to age 70 y for adults

(cross-section drawing of target parts)

Cu balls with Au-coating

"Which contribute to P-32 production, air, target, etc.?"

Discussion

Product mass number Spallation products from Au coating of Cu balls, SP from Nb, Mo in Inconel,

SP from Cr, Fe and Ni in Inconel, ²²Na, ⁷Be: SP from Inconel, ³²P: Ar in air

Discussion: Source material?

Nuclide	half-life (d)	Activ	rity (Bq)	plausible main source	
P-32	14.26	26	_±	3	Ar in air	
Be-7	53.29	880	<u>+</u>	6	spallation product (SP) from target	
Na-22	950.095	2.0	±	0.1	spallation product (SP) from target	
Sc-46	83.82	8.4	±	0.2	SP from Cr in Inconel	
V-48	15.97	31	±	1	SP from Cr in Inconel	
Cr-51	27.7	80	±	3	Cr in Inconel	
Mn-52	5.6	34	±	2	SP from Fe, Ni in Inconel,	Cu
Mn-54	312.2	15	±	1	SP from Fe, Ni in Inconel,	Cu-
Co-56	77.26	34	±	1	SP from Ni in Inconel,	
Co-57	271.79	64	±	1	SP from Ni in Inconel,	& Dall
Co-58	70.86	110	±	2	SP from Ni in Inconel,	
Fe-59	44.503	4.4	±	0.3	SP from Fe, Ni in Inconel,	
Co-60	1924.28	1.6	±	0.1	SP from Ni in Inconel,	
Se-75	119.64	1.4	±	0.1	SP from Nb, Mo in Inconel,	
Y-88	106.6	0.44	±	0.09	SP from Nb, Mo in Inconel,	
Ag-110m	249.9	11	±	1	SP from Au coating of Cu balls	
Os-185	94	2.1	±	0.2	SP from Au coating of Cu balls	
Au-195	186.09	6.8	±	0.8	SP from Au coating of Cu balls	
Au-196	6.2	160	±	2	SP from Au coating of Cu balls	
Au-198	2.696	2800	\pm	40	SP from Au coating of Cu balls	6

Discussion: Estimation of internal dose (ICRP publication 72*)

Nuclide	half-life (d)	Activity (Bq)	μ Sv∕h	Ratio (%)
P-32	14.26	26 ± 3	0.0071	2.5
Au-198	2.696	2800 ± 40	0.1926	68.9
Aggregate dos	е		0.28	100

P-32	:0.014	mSv
Au-198	:0.4	mSv
Aggregate dose	:0.56	mSv

Adult, # 2000 h/year,

*Inhalation dose coefficients: to age 70 y for adults

Summary

- # Determination of **the activity levels** of 20 radionuclides produced in 120 GeV proton target station the beta emitting (APO, FNAL)
- # Measuring the beta emitting radio-nuclide ³²P
- # Estimation of internal dose → P-32: 0.007 μSv/h, Aggregates: 0.28 μSv/h
- # Discussion on their source material

Discussion "Which contribute to P-32 production, air, target, etc.?"

Product mass number

⁷Be, ¹⁹⁸Au: high collection rate ²²Na & ⁴⁶Sc, ⁴⁸V, ⁵²Mn: not so higher collection rate

 \rightarrow mainly produced from target materials not Ar in air

Discussion "Which contribute to P-32 production, air, target, etc.?"

Experimental (Chemical treatment to separate P)

The phosphorus compound $MgNH_4PO_4 \bullet 6H_2O$ was extracted from the filter paper by a chemical separation procedure^{*}. (@Hot laboratory in KURRI)

```
<u>filter paper</u> collecting radioactive aerosols
     # leached by nitric acid
leaching solution
     # 5 mg of P-carrier \gamma
     # Ammonium heptamolybdate sol. \searrow
   heating and stirring
yellow solid as (NH<sub>4</sub>)<sub>3</sub>P(Mo<sub>3</sub>O<sub>10</sub>)<sub>4</sub>
     # dissolved in ammonia sol.
     # HCl aq. \checkmark to slightly acid
     # Citric acid \searrow
   stirring in ice bath
     # magnesia mixture (MgCl<sub>2</sub> + NH<sub>4</sub>Cl sol.) \checkmark
                                                                         Chemical yield: 51%
     # ammonia sol. \searrow to slightly basic
                                                                     (estimated from P-carrier)
     -filtration
white solid as MgNH<sub>4</sub>PO<sub>4</sub>•6H<sub>2</sub>O (20.4 mg)
                                                                     Iiquid scintillation counter
```

*W. T. Mullins and G. W. Leddicotte, "The Radiochemistry of Phosphorus" National Academy of Science (1962)

Results "Beta-ray counting and spectrum"

Beta-ray spectra from liquid scintillation counter

Results "Activity level of P-32"

 $MgNH_4PO_4 \bullet 6H_2O$

Comparing beta-ray spectrum of reference std. of P-32,

26 Bq of P-32

(at the time just after aerosol-sampling from target room)

Beta-ray spectra from liquid scintillation counter

