

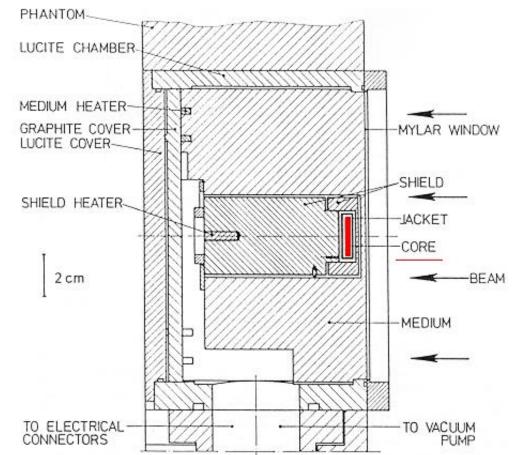
Radiation protection of patients: status of primary standard dosimetry of high-energy photon and electron beams in Austria

Andreas Baumgartner, Andreas Steurer, Franz Josef Maringer

INTRODUCTION

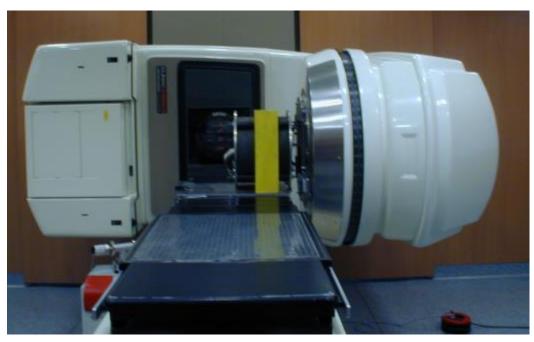
- Improvement of metrology in LINAC radiotherapy
 - \rightarrow improved radiation protection of patients
- Primary standard for the realisation of the unit of absorbed dose to water: graphite calorimeter
- National Metrology Institute (NMI) and national authority on legal metrology in Austria: Federal Office of Metrology and Surveying (BEV - Bundesamt für Eich- und Vermessungswesen)
- Graphite calorimeter was originally designated for ⁶⁰Co gamma ray beams
 - Ionisation chamber calibrations in terms of absorbed dose to water

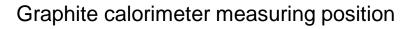
DETERMINATION OF ABSORBED DOSE TO WATER – SITUATION IN AUSTRIA


- Calibration and verification of therapy dosemeters is done in the ⁶⁰Co gamma ray beam
 - Secondary standards are traceable to the BEV primary standard
 - The conversion of the ⁶⁰Co chamber factor to the chamber factor for higher energies uses the code of practice in the Austrian standard OENORM S 5234-3
- To enable primary standard dosimetry of high-energy photon beams
- \blacksquare \rightarrow The energy range of the primary standard was extended
- Refurbishment of the BEV calorimeter
 - Revision and replacement of hardware components
 - Development of a new evaluation program with automatic non-linear drift extrapolations, created in LabView®
 - Verification of calorimeter response for the complete temperature working range
- Calorimeter adaptation to measurement requirements for highenergy radiation fields
 - Set of beam quality specific correction and conversion factors is needed

REALISATION OF THE UNIT OF ABSORBED DOSE TO WATER

- 1st step: calorimetric determination of absorbed dose to graphite
 - Dose ~ temperature change
 - 1 Gy → 1.4 mK in graphite (0.24 mK in water)
 - Quasi-adiabatic operation mode
 - Quasi-isothermal operation mode
- 2nd step: conversion in absorbed dose to water
 - Conversion methods are based on photon-fluence scaling theorem
 - Method 1: computing (scaling theorem)
 - Method 2: experimental / measurements





MEASUREMENTS

- 1) measurements in the BEV dosimetry laboratory: ⁶⁰Co therapy facility
- 2) measurements at accelerator: cooperation with an Austrian hospital
- 3) measurements at accelerators of PTB, Germany and METAS, Switzerland

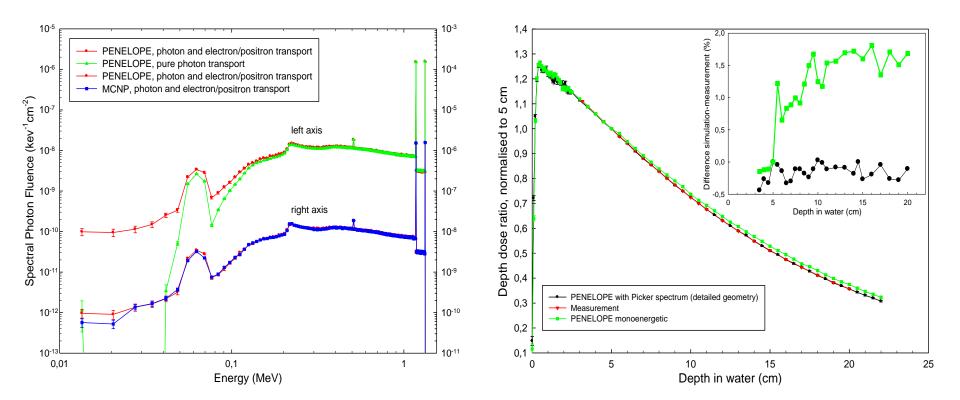
calorimeter mounted in the phantom

Overview measurement setup

BEV - Bundesamt für Eich- und Vermessungswesen

SIMULATION STUDIES

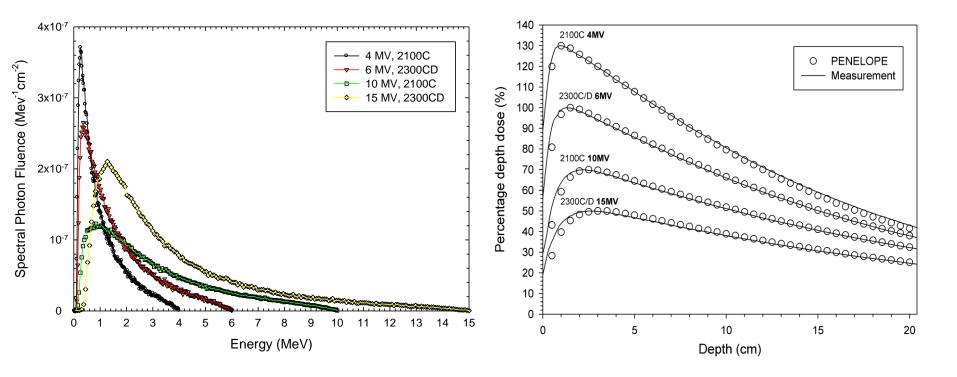
- Calculation of beam quality specific (application specific) correction factors for the graphite calorimeter
 - Correction for the effect of the vacuum gaps around the core
 - Correction for the deviation of the graphite phantom dimensions from the scaling requirements
 - Correction for the difference in air attenuation
- Monte Carlo code: PENELOPE-2006 (pencyl, penmain)
 - Preparative simulations with monoenergetic photons (1,25 MeV), under variation of the field size
- Beam quality specific corrections require the MCmodelling of the irradiation facilities
- $\blacksquare \rightarrow \mathsf{Realistic}$ input radiation fields



RESULTS

Simulation of photon fluence spectra

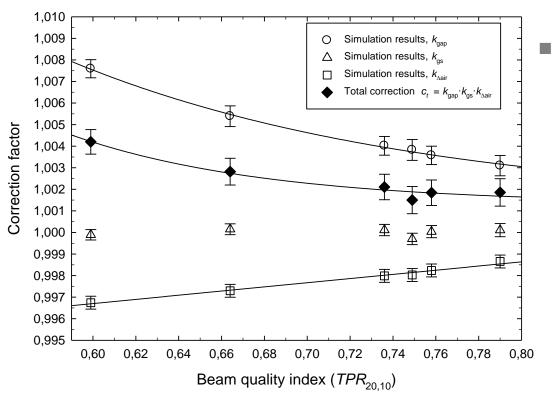
verification based upon depth-dose distribution measurements


BEV - Bundesamt für Eich- und Vermessungswesen

RESULTS

Determination of photon fluence spectra of linear accelerators

- Varian Clinac 2100C u. 2300C/D : 4 MV, 6 MV, 10 MV, 15MV
- Verification with depth-dose measurements / calculated and measured TPR_{20,10} indices
 - Difference between measurement and simulation: $\Delta TPR_{20,10} < 1\%$ (4MV < 2%)


BEV - Bundesamt für Eich- und Vermessungswesen

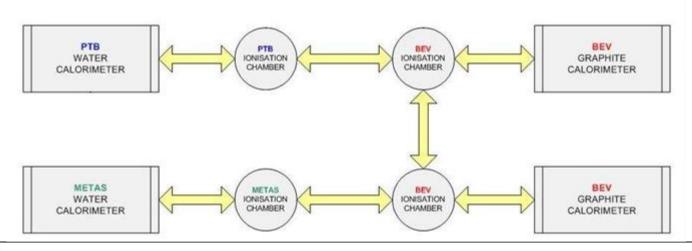
RESULTS

 Correction factors for high-energy photon beams

Evaluation in dependence on TPR_{20,10}

Verification

- BIPM, Paris, key comparison: indirect comparison of the standards for absorbed dose to water of the BEV and the BIPM
- Comparison exercise of the European Association of National Metrology Institutes (EURAMET)
 - Project partners:
 - BEV (pilot laboratory)
 - METAS (NMI of Switzerland)
 - PTB (NMI of Germany)



EURAMET COMPARISON

- Direct comparison of primary standards of absorbed dose to water in ⁶⁰Co and high-energy photon beams
 - photon beam qualities: generated by electrons with energies of 4, 6, 10 and 15 MeV
- The BEV transported the graphite calorimeter primary standard to the project partners in Germany and Switzerland
- The results obtained by the different NMI's are widely in agreement and mostly within the standard measurements uncertainties

HIGH ENERGY PHOTON BEAMS

BEV - Bundesamt für Eich- und Vermessungswesen

SUMMARY & CONCLUSIONS

- The application of the calorimeter in high-energy photon and electron beams requires:
 - Beam quality specific correction factors and conversion factors
 - Determination is mainly based upon MC-simulations
- Confirmation of the implemented correction factors in the framework of:
 - BIPM key comparison
 - EURAMET project 1021
- → Work carried out provided the methodological basis for the primary standard dosimetry of high-energy photon and electron beams with the BEV calorimeter
 - □ → Metrological directly traceable dosimetry
- Essential improvement in radiation protection of radiotherapy patients
 - Improvement of dosimetry and quality assurance in LINAC radiotherapy
 - Accurate knowledge of the applied dose is a main factor influencing the success of a radiotherapy and therefore of great importance for the treatment planning

Thank you for your attention

