Dose Calculation for Externally Contaminated Livestock and Animal Triage

P. Sprenger, T. E. Johnson, A. Brandl

Colorado State University

Environmental and Radiological Health Sciences

...

Dose and Don'ts

- Emergency response / consequence management
- Non-human biota
- Animal dosimetry
- Livestock triage

Radiological Emergency

- Radiological emergency
 - release of radioactive material to environment
 - necessitating off-site emergency response
 - consequence management
- Priorities
 - emergency phase
 - concern for human wellbeing
 - "Snowball effect"?

- pets, livestock, wildlife animals
- public interest and perception
- consequence management phase
 - also: human food chain, economic impact

Livestock and Food Supply Colorado State University

- Shelter and / or evacuation
 - lack of human care for livestock
 - water, feed
- Concerns
 - dose to owner
 - external contamination
 - shelter
 - decontamination
 - internal contamination
 - consumption of animal products
 - handling and processing
 - function of dose to animal?

Handling and Processing <

- Salvageability
 - animal exposure
 - cost of decontamination
 - expected demand for animal (food) products
 - public perception
 - economic impact to owner
- Dose to animal
 - no visible acute radiation injuries
 - upper limit
 - rejection by public expected
 - \rightarrow disposal
 - LD₁₀
 - comparison with animal data
 - large: $\mathcal{O}(1 \text{ Sv})$, small: $\mathcal{O}(2 \text{ Sv})$, poultry: $\mathcal{O}(3 \text{ Sv})$

Non-human Biota

- Health Physics
 - employing dosimetry to:
 - prevent acute radiation injury
 - "deterministic effects"
 - limit probability of occurrence of late effects
 - "stochastic effects"
 - adverse effects to environment?
 - International Commission on Radiological Protection

- prevention or reduction of frequency of deleterious effects
- maintenance of biological diversity, conservation of species, health and status of natural habitats, communities, and ecosystems

Non-human Biota (II)

Colorado State University

Reference Animals and Plants

- set of 12 reference biota (9 animals, 3 plants)
 - development of system and science base
 - relate exposure to dose, dose to effect, effect to consequences
 - examination and interpretation by way of conceptual and numerical models
 - few biotic types before generalization
 - large mammal (deer), small mammal (rat), aquatic bird, amphibian, freshwater fish, marine fish, insect, crustaecean, annelid, large plants, grass, seaweed

Animal Dosimetry

- Simple geometric shapes
 - spheres, ellipsoids
 - no assessment of individual organ / tissue doses
 - exceptions: liver, testes
- Computer models
 - exposure scenarios
 - ground deposition of radionuclides
 - "infinite homogeneous plane source"

$$D = D(c_g(x, y, z)) = D(c_g)$$

Animal Dosimetry (II)

Colorado State University

Absorbed dose

 $D = D(\vec{x}, V(\vec{x}'), A, E, \mu_{en}, B)$

- \vec{x} ... coordinates for radioactive source
- $\vec{x}' \dots$ coordinates for absorber volume element dV
- A ... activity of the source
- E ... radiation energy
- μ_{en} ... energy absorption coefficient
- *B* ... buildup (function of depth in absorber)

Animal Dosimetry (III)

Colorado State University

- Analytic solutions
 - spheres

$$\dot{D} = \frac{3}{16\pi^2 R^3} \left(\frac{\mu_{en,m}}{\rho_m}\right) AE \int_0^R \int_0^{\pi} \int_0^{2\pi} \frac{B(\mu d_m) e^{-\mu d_m} r^2 \sin(\theta)}{r^2 + (h+R)^2 - 2r(h+R)\cos(\theta)} d\varphi \, d\theta \, dr$$

prolate ellipsoid

 $\dot{D} = \frac{3}{16\pi^2 m_1 m_2^2} \left(\frac{\mu_{en,m}}{\rho_m}\right) AE \int_0^{\xi_{max}} \int_0^{\pi} \int_0^{2\pi} \frac{B(\mu d_m) e^{-\mu d_m} (m_1^2 - m_2^2)^{3/2} \left(\sinh^2(\xi) + \sin^2(\nu)\right) \sinh(\xi) \sin(\nu)}{(m_1^2 - m_2^2) \left(\sinh^2(\xi) + \cos^2(\nu)\right) + 2\sqrt{m_1^2 - m_2^2} (m_2 + h) \cosh(\xi) \cos(\nu) + (m_2 + h)^2} d\varphi \, d\nu \, d\xi$

general ellipsoid

$$\dot{D} = \frac{3}{16\pi^2 abc} \left(\frac{\mu_{en,m}}{\rho_m}\right) AE \int_{-c^2}^{a^2} \int_{-a^2}^{-c^2} \int_{-a^2}^{-b^2} \frac{B(\mu d_m) e^{-\mu d_m} (\lambda - \xi)(\xi - \nu)(\lambda - \nu)}{8\sqrt{-(a^2 + \lambda)(b^2 + \lambda)(c^2 + \lambda)(a^2 + \xi)(b^2 + \xi)(c^2 + \xi)(a^2 + \nu)(b^2 + \nu)(c^2 + \nu)}} d\nu d\xi d\lambda$$

point sources (on ground / animal hide)

Livestock Triage

Conclusions

- Animal triage consideration
 - animal exposure
 - analytical results for external exposure
 - cost of decontamination
 - effectiveness and efficacy
 - public perception
 - most difficult to quantify
 - stigmatization expected
 - labeling vs. unlabeled
 - alternative uses
 - animal products other than food
 - pet food
 - donations (zoos, etc.)
 - economic impact to owner