

## Underpinning Science: State of the Art Non-Cancer Effects, Especially **Circulatory Diseases** Mark P. Little **Radiation Epidemiology Branch National Cancer Institute** IRPA 13 Scottish Exhibition and Conference Centre Glasgow 13-18 May 2012



## Outline of talk

#### Introduction

- □ Circulatory disease
  - A-bomb survivors, occupationally-exposed cohorts
  - Meta-analysis of circulatory disease in moderate+low-dose epidemiological data

#### □ Cataract

- Other non-malignant endpoints
  - Respiratory, digestive
  - □ Neuro-cognitive
- Conclusions

## Dose response for circulatory disease in A-bomb survivors (Shimizu et al. Br. Med. J. 340:b5349;2010)



Fig 1| Radiation dose-response relation (excess relative risk per Gy) for death from stroke, showing linear and linearquadratic functions. Shaded area is 95% confidence region for fitted linear line. Vertical lines are 95% confidence intervals for specific dose category risks. Point estimates of risk for each dose category are indicated by circles

ERR/Sv heart (ICD9 393-400,402,404,406-429)

ERR/Sv stroke (ICD9 430-438)



NOTE - TOWARDS A NEW PARADIO

**Fig 2** | Radiation dose-response relation (excess relative risk) for death from heart disease, showing linear and linearquadratic functions. Shaded area is 95% confidence region for fitted linear line. Vertical lines are 95% confidence intervals for specific dose category risks. Point estimates of risk for each dose category are indicated by circles

0.18 (95% CI 0.11, 0.25)

0.12 (95% CI 0.05, 0.19)

ERR/Sv other circulatory (ICD9 393-459 - above) 0.58 (95% CI 0.45, 0.72) Significant dose response, but excess risk only clear above ~0.5 Gy

**D**ose response same if adjusted for smoking, drinking + other CVD risk factors

Shape of dose-response uncertain: weak indications (linear-quadratic vs linear p=0.17) of upward curvature for stroke, none (p>0.5) for heart disease

## Dose response for ischemic heart disease +stroke morbidity in Mayak nuclear

Workers (Azizova et al. Radiat. Res. 174:155-68; 2010, Radiat. Res. 174:851-64; 2010)



ERR/Gy ischemic heart (ICD9 410-414) 0.119 (95% CI 0.051, 0.186)

ERR/Gy cerebrovascular (ICD9 430-438) 0.449 (95% CI 0.338, 0.559)

Adjustment for smoking and drinking makes almost no difference

#### VATIONAL CANCER STITUTE

## Circulatory excess relative risk Sv<sup>-1</sup> in occupational groups (Little *et al. Radiat. Res.* 169:99-109;2008, Little *et al. Radiat.*

Env. Biophys. 49:139-153;2010, Little et al. Env. Health Perspect. 2012 in press)` Chernobyl recovery hypertension 0.26 (95% CI -0.04 -0.56) 0.41 (95% CI 0.05 - 0.78)Chernobyl recovery ischaemia heart Chernobyl recovery other heart -0.26 (95% CI -0.81 - 0.28) 0.45 (95% CI 0.11 - 0.80) Chernobyl recovery stroke Mayak ischaemic heart (external  $\gamma$ ) 0.11 (95% CI 0.05 - 0.17) 0.46 (95% CI 0.36 - 0.57) Mayak stroke (external  $\gamma$ )  $0.25 \quad (95\% \text{ CI} - 0.01 - 0.54)$ NRRW-3 circulatory BNFL circulatory 0.54 (90% CI 0.30 - 0.82) **BNFL** ischaemic heart 0.70 (90% CI 0.37 - 1.07) 0.66 (90% CI 0.17 - 1.27) **BNFL** stroke (90% CI -2.9 -13.7) EdF ischemic heart 4.1 17.4 (90% CI 0.2 – 43.9) EdF stroke Canadian uranium workers ischaemic heart 0.15 (95% CI -0.14 - 0.58) -0.29 (95% CI < -0.29 - 0.27)Canadian uranium workers stroke -2.86 (95% CI -6.90 – 1.18) US Oak Ridge ischaemic heart German uranium miner circulatory -0.26 (95% CI -0.6 -0.05)

Increased risk in Chernobyl, Mayak, NRRW-3, BNFL, EdF (?) Most other risks negative, consistent with modest excess risk



## Meta analysis of circulatory disease (Little *et al. Env. Health Perspect.* 2012 in press)`

PubMed + ISI Thompson search using terms "radiation" +"heart" +"disease" or "radiation" +"stroke" or "radiation" +"circulatory" +"disease", published  $\geq 1/1/1990$  (search on 14/5/2011 + 17/8/2011)

Restricted to human data exposed to moderate/low uniform whole body doses (acute mean dose <0.5 Sv – limit suggested by radiobiology, but chronic exposures allowed higher), with good quality dosimetry

#### 12 studies identified

Fixed effect + random effects analysis (random effects needed when significant heterogeneity)



## Problems with meta-analysis:

## publication/selection bias?

- Generally expect bias towards publications with significant results
- Funnel plot (mean vs SE) is reasonably symmetric, implying little or no bias (possible slight problem with Laurent et al., but little information in this study) All data



## Test of publication/selection bias,

### and bias correction (Little et al. Env. Health Perspect. 2012 in press)

| Disease endpoint          | Egger et al.              | Random effects ERR             | Random effects ERR             |  |
|---------------------------|---------------------------|--------------------------------|--------------------------------|--|
|                           | publication/selection-    | Sv <sup>-1</sup> (and 95% CI), | Sv <sup>-1</sup> (and 95% CI), |  |
|                           | bias test <i>p</i> -value | bias-uncorrected               | corrected using trim-          |  |
|                           |                           |                                | and-fill method of             |  |
|                           |                           |                                | Duval and Tweedie              |  |
|                           |                           |                                |                                |  |
| Ischaemic heart disease   | 0.322                     | 0.10 (0.04, 0.15)              | 0.09 (0.02, 0.15)              |  |
| Other heart disease       | 0.468                     | 0.08 (-0.12, 0.28)             | 0.08 (-0.12, 0.28)             |  |
| Cerebrovascular disease   | 0.692                     | 0.21 (0.02, 0.39)              | 0.20 (0.02, 0.39)              |  |
| Other circulatory disease | 0.408                     | 0.19 (-0.00, 0.38)             | 0.16 (-0.03, 0.35)             |  |
| All circulatory disease   | 0.279                     | 0.11 (0.03, 0.19)              | 0.16 (0.08, 0.24)              |  |

Little evidence of publication/selection bias, and bias corrections are minimal



# Confounding factors for circulatory disease

Few studies adequately control for established circulatory risk factors (smoking, diabetes, obesity/inactivity, hypertension, low HDL/high LDL cholesterol)

- A-bomb morbidity study (Yamada et al Radiat Res 161:622-32;2004) controls for smoking, drinking
- A-bomb circulatory mortality adjusted for smoking, alcohol intake, education, occupation, obesity (BMI), diabetes mellitus (Shimizu *et al Br Med J* 340:b5349;2010)
- Mayak study (Azizova et al Radiat Res 174:155-68,851-64;2010) controls for smoking and drinking

Many of these risk factors correlated with socioeconomic status (SES): limited adjustment for SES in some occupational studies (IARC 15country, BNFL, NRRW-3), none in others

Will they confound (i.e., are they correlated with radiation dose)?

- No evidence for confounding by these in A-bomb or Mayak studies
- Lack of associations between radiation dose and smoking-related nonmalignant respiratory diseases in occupational studies (IARC 15-country, NRRW-3, EdF) implies that smoking unlikely to confound in these cohorts



#### Meta-analysis of moderate/low dose circulatory disease: excess relative risk coefficients (Little et al. Env. Health

*Perspect.* 2012 in press)

|                     |                              | <b>Fixed-effect</b> | Random-effect   |                 |
|---------------------|------------------------------|---------------------|-----------------|-----------------|
| Circulatory disease |                              | ERR / Sv            | ERR / Sv        |                 |
| subtype             | Studies Included             | (+95% CI)           | (+95% CI)       | Heterogeneity p |
| Ischemic heart      | Yamada et al., Ivanov et     | 0.10                | 0.10            | 0.408           |
| disease             | al., Vrijheid et al.         | (0.05 to 0.15)      | (0.04 to 0.15)  |                 |
|                     | Muirhead et al. Azizova et   |                     |                 |                 |
|                     | al., Shimizu et al., Laurent |                     |                 |                 |
|                     | et al., Lane et al.          |                     |                 |                 |
| Non-ischemic heart  | Ivanov et al., Vrijheid et   | 0.12                | 0.08            | 0.199           |
| disease             | al., Shimizu et al.          | (-0.01 to 0.25)     | (-0.12 to 0.28) |                 |
| Cerebrovascular     | Yamada et al., Ivanov et     | 0.20                | 0.21            | < 0.001         |
| disease             | al., Kreuzer et al.,         | (0.14 to 0.25)      | (0.02 to 0.39)  |                 |
|                     | Vrijheid et al., Azizova et  |                     |                 |                 |
|                     | al., Muirhead et al.,        |                     |                 |                 |
|                     | Shimizu et al., Laurent et   |                     |                 |                 |
|                     | al., Lane et al.             |                     |                 |                 |
| Circulatory disease | Yamada et al., Ivanov et     | 0.10                | 0.19            | < 0.001         |
| apart from heart    | al., Shimizu et al.          | (0.05 to 0.14)      | (-0.00 to 0.38) |                 |
| disease and stroke  |                              |                     |                 |                 |



 Random effects model suggests significant excess risk for ischaemic heart disease and stroke
Rondorling significant excess risk for girculatory disease apart from heart

Borderline significant excess risk for circulatory disease apart from heart and stroke



### Radiation-Exposure-Induced Death for Various Subtypes of Circulatory Disease, by Country (Little

et al. Env. Health Perspect. 2012 in press)

|         |                      |                       |                      | Other                 | All                   | UNSCEAR ca   | ancer risks       |
|---------|----------------------|-----------------------|----------------------|-----------------------|-----------------------|--------------|-------------------|
| Country | Ischaemic            | Other heart           |                      | circulatory           | circulatory           | All solid    | Leukemia          |
|         | heart disease        | disease               | Stroke               | disease               | disease               | cancer       | excl CLL          |
| China   | 0.92<br>(0.41, 1.42) | 0.11<br>(-0.16, 0.37) | 4.31<br>(0.48, 8.14) | 1.43<br>(-0.01, 2.86) | 6.76<br>(2.63, 10.89) | 3.95<br>3.89 | 0.27<br>0.42      |
| France  | 0.50<br>(0.22, 0.78) | 0.54<br>(-0.85, 1.94) | 0.92<br>(0.10, 1.74) | 0.53<br>(0.00, 1.05)  | 2.50<br>(0.77, 4.22)  | -            | -                 |
| Germany | 1.71<br>(0.76, 2.65) | 0.97<br>(-1.52, 3.46) | 1.69<br>(0.19, 3.19) | 1.38<br>(-0.01, 2.76) | 5.75<br>(2.39, 9.10)  | -            | -                 |
| Japan   | 0.57<br>(0.25, 0.88) | 0.80<br>(-1.25, 2.85) | 2.19<br>(0.24, 4.14) | 0.45<br>(0.00, 0.91)  | 4.01<br>(1.13, 6.89)  | 4.65<br>4.90 | 0.32<br>0.43      |
| Russia  | 2.82<br>(1.26, 4.39) | 0.31<br>(-0.49, 1.11) | 4.59<br>(0.51, 8.66) | 0.79<br>(0.00, 1.57)  | 8.51<br>(4.00, 13.02) | -            | -                 |
| Spain   | 0.91<br>(0.41, 1.42) | 0.82<br>(-1.28, 2.52) | 1.91<br>(0.21, 3.60) | 0.81<br>(0.00, 1.63)  | 4.45<br>(1.73, 7.17)  | Circulator   | ry disease        |
| Ukraine | 4.14<br>(1.85, 6.43) | 0.20<br>(-0.31, 0.70) | 2.85<br>(0.31, 5.39) | 0.93<br>(0.00, 1.85)  | 8.11<br>(4.53, 11.69) | with cance   | arable<br>er risk |
| UK      | 1.70<br>(0.76, 2.64) | 0.37<br>(-0.58, 1.32) | 2.24<br>(0.25, 4.22) | 0.76<br>(0.00, 1.53)  | 5.07<br>(2.55, 7.58)  | 5.15<br>4.40 | 0.38<br>0.43      |
| USA     | 1.82<br>(0.81, 2.82) | 0.57<br>(-0.89, 2.03) | 1.29<br>(0.14, 2.44) | 0.80<br>(0.00, 1.61)  | 4.48<br>(2.22, 6.74)  | 4.74<br>4.41 | 0.47<br>0.42      |



Significant increase in cortical and PSC, but nothing significant for nuclear color or opacity



## Cataract in A-bomb survivors: (surgical removal) (Neriishi et al. Radiat. Res. 168:404-8; 2007)



## Median cortical opacity ratio (exposed vs unexposed) in NASA astronauts (LOCS III)(Chylack *et al. Radiat. Res.* 172:10-20; 2009)



Significant (p=0.017) increase in cortical opacity (parameter  $\sigma$  in skew normal) exposed *vs* unexposed astronauts

No assessment of dose response in this cohort



## Threshold dose estimates for cataract

| Cohort                                                                                                 | Ascertainment       | Threshold dose estim                                            | ates (Gy)                                                                        |
|--------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|
| A-bomb AHS<br>examination (Nakashima<br>et al. Health Phys. <b>90</b> :154-60;<br>2006)                | LOCS II             | Cortical:<br>PSC:                                               | 0.6 (90% CI <0, 1.2)<br>0.7 (90% CI <0, 2.8)                                     |
| A-bomb AHS cataract<br>surgery (Neriishi <i>et al.</i><br><i>Radiat. Res.</i> <b>168</b> :404-8; 2007) | Surgical<br>removal | All cataract:                                                   | 0.1 (95% CI <0, 0.8)                                                             |
| Chernobyl recovery<br>worker (Worgul <i>et al.</i><br><i>Radiat. Res.</i> <b>167</b> :233-43;<br>2007) | Merriam-Focht       | Non-nuclear stage 1:<br>PSC stage 1:<br>All cataract stage 1-5: | 0.50 (95% CI 0.17, 0.69)<br>0.35 (95% CI 0.19, 0.66)<br>0.50 (95% CI 0.17, 0.65) |

Thresholds of much more than 0.6 Gy are inconsistent with A-bomb + Chernobyl data



## Cataract summary risk estimates

| Cohort                                                                                          | Ascertain<br>-ment           | Endpoint Exces                                                | ss odds ratio (EOR) / Gy (95% CI)                            |
|-------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|
| Swedish skin haemangioma<br>(Hall et al Radiat Res 152:190-5; 1999)                             | LOCS I                       | Cortical:<br>PSC:                                             | 0.50 (0.15, 0.95)<br>0.49 (0.07, 1.08)                       |
| A-bomb AHS (Nakashima et al Health<br>Phys 90:154-60; 2006)                                     | LOCS II                      | Cortical (/Sv):<br>PSC (/Sv):<br>Nuclear opacity (/Sv):       | 0.30 (0.10, 0.53)<br>0.44 (0.19, 0.73)<br>0.07 (-0.11, 0.30) |
| A-bomb AHS cataract surgery<br>(Neriishi et al Radiat Res 168:404-8; 2007)                      | Surgical removal             | All cataract removal:                                         | 0.39 (0.24, 0.55)                                            |
| Icelandic airline pilots (Rafnsson <i>et al Arch Opthalmol</i> 123:1102-5; 2005)                | WHO                          | Nuclear:<br>Cortical:<br>PSC:                                 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$         |
| Chernobyl recovery worker<br>(Worgul <i>et al Radiat Res</i> 167:233-43; 2007)                  | Merriam-<br>Focht            | Non-nuclear stage 1-5:<br>Nuclear:<br>All cataract stage 1-5: | 0.65 (0.18, 1.30)<br>0.07 (-0.44, 1.04)<br>0.70 (0.22, 1.38) |
| US Radiologic technologist<br>(Chodick <i>et al Am J Epidemiol</i> <b>168</b> :620-31;<br>2008) | Self-<br>reported<br>removal | All cataract removal:<br>Endpoint heteroge                    | 2.0 (-0.7, 4.7)<br>eneity makes comparisons difficult        |
| Finnish interventional                                                                          | LOCS II                      | All opacity:                                                  | 13 ( -2, 28)                                                 |
| radiologists (Mrena <i>et al Scand J Work</i><br>Env Health <b>37</b> :237-43; 2011)            |                              | <b>Problems with dos</b>                                      | imetry in certain cohorts                                    |



## Non-cancer mortality disease in Abomb survivors (Ozasa et al. Radiat. Res. 177:229-43;2012)

| All solid cancer      | 0.47 (0.38, 0.56)   |
|-----------------------|---------------------|
| All non-cancer        | 0.13 (0.08, 0.18)   |
| Other diseases        | 0.03 (-0.11, 0.19)  |
| Infectious disease    | -0.03 (-0.22, 0.23) |
| Genitourinary disease | 0.18 (-0.06, 0.46)  |
| -Cirrhosis            | 0.11 (-0.07, 0.34)  |
| Digestive disease     | 0.20 (0.05, 0.38)   |
| Respiratory disease   | 0.23 (0.11, 0.36)   |
| Circulatory disease   | 0.11 (0.05, 0.18)   |
| Endpoint              | ERR /Sv (95% CI)    |

**Evidence of excess respiratory and digestive disease (+CVD)** 

Not seen in any other cohort (uniformity implying possible bias?)

But relative risk distinctly lower than for solid cancer (implying OK? Or due to death certificate misclassification of cancer as non-cancer?)



## A-bomb survivor cause of death misclassification (Sposto et al Biometrics 48:605-17;1992)

- Increase in non-cancer mortality due to death certificate misclassification?
- Autopsy study finds 22% of non-cancer deaths misclassified as cancer deaths.
- Statistical adjustment reduces the ERR/Gy for non-cancer mortality from 0.06 to 0.05, but risk coefficient remains statistically significant.



## Central nervous system effects

Many studies of childhood cancer survivors (principally of leukemia) document cognitive impairment associated with high dose cranial irradiation

Hall *et al.* (*Br. Med. J.* **328**:19;2004) suggested cognitive impairment in Swedish group treated for haemangioma in infancy with much lower doses, with ~50% reduction in high school attendance associated with >100 mGy; similar dose-related reductions in cognitive test performance

*In utero* exposed A-bomb data also suggest cognitive impairment at high dose (Schull & Otake *Teratology* **59**:222-6;1999), but no cognitive impairment (e.g., reduction in IQ) in 0-100 mGy dose range Are low dose studies (A-bomb, Hall *et al.*) consistent (metrics differ)? Is *in utero* same as early childhood?



## Conclusions

#### Circulatory disease

- Meta-analysis of moderate+low-dose data suggests significant excess risk for two out of four circulatory disease endpoints (ischaemic heart, stroke), and aggregate risk significant
- Risk factors from moderate+low-dose cohorts suggest radiation-associated population risks of circulatory disease are similar to radiation-induced cancer
- Apart from A-bomb + Mayak, few cohorts have information on major lifestyle factors (smoking, drinking, obesity, HDL+LDL cholesterol, hypertension, diabetes), but little indication that these confound in A-bomb or Mayak

#### Cataract

- Evidence that cortical + posterior subcapsular cataract are radiation induced, but not nuclear
- Thresholds of >0.6 Gy can be ruled out for cataract (but lin/LQ increase with dose?)

#### Other non-malignant

- Significant excess of non-malignant respiratory and digestive disease mortality in Abomb data, but not seen in any other exposed group (probably not misclassification?)
- Possibly inconsistent evidence for neuro-cognitive effects after exposure *in utero*, early childhood