IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Enhancing nuclear safety

Assessment on the 66th day of projected external dose for populations living in the North-West fallout zone of the Fukushima nuclear accident

<u>A. THOMASSIN</u>, F. QUEINNEC, A. RANNOU, J. AIGUEPERSE, P. GOURMELON, J.-R. JOURDAIN, M. CHARTIER

Radiological Protection and Human Health Division

13 – 18 May 2012 Glasgow, Scotland

At the beginning ...

first days following the accident : <u>lack of reliable</u> data from Japan

- release composition
- environmental measurements
- precise meteorology
- contamination measurements of exposed population
- dosimetric impact could not be performed immediately

two weeks following the accident : atmospheric releases non totally stopped

• dosimetric impact for mid and long term was still not available

US dose rate map

- airborne measurements by US DoE / NNSA between March 30th - April 3rd
- published by NNSA April 7th
- particularly high dose rate in a north-west strip about 20 km width, 50 km length
- deposit in this strip appear to have been particularly important (rain and snow)

comparison with previous measurements and improved knowledge of meteorology : deposit from March 15th and 16th releases

French map of projected 1st year external dose

from :

- airborne measurements of dose rate by DoE / NNSA
- composition of the releases estimated by IRSN

published by IRSN April 8th
28 days after the accident

3

Japan projected 1st year external dose map

4

Comparison IRSN versus MEXT

Map of Cs deposit by MEXT

Comparison of MEXT Cs deposit and dose maps

the values of deposit 300,000 Bq/m² to 600,000 Bq/m² correspond to values of external dose received in the first year from 5 mSv to 10 mSv

the conversion coefficient of the surface activity in Cs (134+137) in external dose received in the first year is found to be

16.6 (mSv/year) / (MBq/m²)

Deposit, dose and population

Deposit of caesium (137+ 134) (Bq/m²)	> 300,000	> 600,000	> 1 million	> 3 millions	> 6 millions
External dose 1 st year (mSv)	> 5	> 10	> 16	> 50	> 100

Deposit, dose and population

Deposit of caesium (137+ 134) (Bq/m²)	> 300,000	> 600,000	> 1 million	> 3 millions	> 6 millions
External dose 1 st year (mSv)	> 5	> 10	> 16	> 50	> 100
External dose 70 years (mSv)	> 41	> 82	> 136	> 408	> 816

- no exposure due to diet, nor initial cloud
- effective total projected doses are higher, depending on the type of deposit (wet or dry), the diet and the origin of food

Deposit, dose and population

Deposit of caesium (137+ 134) (Bq/m²)	> 300,000	> 600,000	> 1 million	> 3 millions	> 6 millions	
External dose 1 st year (mSv)	> 5	> 10	> 16	> 50	> 100	
External dose 70 years (mSv)	> 41	> 82	> 136	> 408	> 816	
Population (excluding exclusion zone)	292,000	69,400				
		43,000	26,400			
			21,100	3,100	2,200	

- no exposure due to diet, nor initial cloud
- effective total projected doses are higher, depending on the type of deposit (wet or dry), the diet and the origin of food

Fukushima versus Chernobyl

in the absence of countermeasures for evacuation for 4 years, the external dosimetric impact of Fukushima accident represents 60% of that of Chernobyl

Fukushima versus Chernobyl

evacuation of population 1 year after, the external dosimetric impact is reduced of 59%

Fukushima versus Chernobyl

evacuation of population 3 months after, the external dosimetric impact is reduced of 82%

Conclusion

□ IRSN : first map of projected dose in less than one month, with US measurements

u without evacuation countermeasure : order of magnitude similar to Chernobyl

u evacuation of most contaminated territories necessary, as Japan decided May 16th

Thank you for your attention

any contact : alain.thomassin@irsn.fr

📉 😴 🗒 🔝 🔢 😿 🛛 IRPA13, 13-18 May 2012, Glasgow, Scotland