

Improvement of construction of recombination chambers for mixed radiation dosimetry at work places

Dr eng. Michał A. Gryziński

National Centre for Nuclear Research

POLAND

Dosimetry at work places

RPA

Invention

 $H^{*}(10) = D^{*}Q^{*}$

Dosimetry at work places

RPAC

 $H^*(10) = D^*Q^*$

Recombination chamber response

depends on LET

Recombination chamber

Recombination chamber

Recombination chamber is a tissue-equivalent, high-pressure ionization chamber operating under conditions of local recombination of ions.

Local recombination of ions

Invention

Developement

Half of the century of development

20 recombination methods; 30 recombination chambers; 15 various recombination dose meters

🖪 POLON-ALFA

REM-2 manufactured by POLON in Bydgoszcz (used in CERN, JINR, FermiLab and others)

Recombination chambers mentioned in IAEA/ICRU/ICRP publication

Invention Developement

Measurements

Hundreds of measurements...

Measurements performed in many different radiation fields: high energy, reactor beams, isotopic sources, accelerators, environmental, pulse

Several international intercomparison experiments (CERN, JINR, GSI, HZB...)

vention Developement

Measurements

Lately measurements in 2012

Neutrons (60MeV protons on W target) Burst length 1 μ s and 10 μ s Dose equivalent/burst 0.8 \div 165 nSv Dose equivalent rate 0.3 mSv/h \div 60 mSv/h

Fitted function y = ax

Recombination methods are suitable for pulsed radiation dosimetry

New generation of recombination chamber denoted REM-3 is lately constructed and under the tests!

The new REM-3

- innovative positioning of insulators

- polypropylene insert and electrodes

- easy switch between differential and summation mode

All modifications supported by Monte Carlo calculations

Triple-mode

Invention Developement Measurements

nents The ne

The new REM-3

Triple-mode

Positioning of insulators and PE insert

The new REM-3

Differential and summation mode

Triple-mode...

Separate polarizing of electrodes (two voltages in the same time allow to measure H or D and selfmonitoring)

Automatic triple-mode system

1. Normal works in **summation mode**

2. In case of raised levels of radiation switch to **differential mode**

3. In case of unstable radiation level switch to **selfmonitoring mode**

Conclusion

Further investigation...

...combining with ultrasensitive chambers to dosimetric system... ...documentation for remanufacturing!

- flat energy response in the range from 1 meV to 10 TeV (20%)
- rapid stabilization, atomic composition, mass, materials, range...
- remote control, data transfer, long-life detector
- direct values of H*(10) for differential mode
- sensitivity adoption to actual radiation (automatic)

General conclusion for recombination chambers e.g. REM-3

- 1. Give information **both** on absorbed dose and on radiation quality
- 2. Are sensitive to all kinds of radiation (incl. high energy neutrons)
- 3. Give information on photon and neutron **contribution** to $H^*(10)$
- 4. Wide application also satisfactory for **work places monitoring** (also suitable for in-beam mesurements)

RPA

Ministerstwo Nauki i Szkolnictwa Wyższego

Thank you for your attention!

Improvement of construction of recombination chambers for mixed radiation dosimetry at work places

Dr eng. Michał A. Gryziński National Centre for Nuclear Research POLAND

