

COLOGNE UNIVERSITY OF APPLIED SCIENCES

...

Institute of Applied Optics and Electronics

Paradigm Change for Optical Radiation – Temporary Blinding from Optical Radiation as Part of the Risk Assessment

Prof. a. D. Dr. Hans-Dieter Reidenbach Cologne University of Applied Sciences Research Laboratory Medical Technology and Non-Ionizing Radiation

Content

- 1. Introduction
- 2. Methods to determine the visual impairment
- 3. Experimental results
- 4. Summary

- It is stated in the European Directive on artificial optical radiation 2006/25/EC that....
-workers shall not be exposed above the exposure limit values, which are based on various ICNIRP guidelines

In addition....

- Indirect effects are a new > ... the employer shall give particular attention to any indirect effects amongst others such as temporary blinding when carrying out the risk assessment.
- Temporary blinding is the result of a dazzling or glaring light in the visual field ("field of view")
- At the very moment the database for the evaluation of adverse effects on vision caused by flash blindness and degraded color-vision is insufficient as far as new optical sources like lasers and LEDs are concerned.

Glare might be described as light emitting from an optical source, either a natural source like the sun or an artificial one like a lamp including an LED or a laser, with an intensity great enough to reduce a viewer's ability to see or that causes annoyance or discomfort

 \Rightarrow disability and discomfort glare

Glare is normally accompanied by more or less afterimages.

What does afterimage mean?

- An afterimage is the visual impression which appears more or less immediately after the decay of the stimulation at the site where the irradiation took place.
- Parts on the retina which have been exposed by light at a sufficient level, loose its sensitivity
- Local adaptation results in various interpretations of the visual field as far as brightness, hue and saturation are regarded

- Under normal illumination conditions people can adapt to changing luminous levels and perform well
- But even with subthreshold exposure glare might impair visual functions more or less
 - dazzling effect of a bright light source in the field of view or
 - afterimage formation, which is mainly the result of photochemical changes and some neural influence from the visual cortex
- During the refractory time, an exposed individual is visually handicapped

- Determination of the degree and duration of impairment resulting from glare, dazzle, flashblindness and afterimages:
 - especially recovery duration of visual acuity caused by
 - a laser beam or
 - light from a lamp product like an LED
- Search for functional relations as far as
 - wavelength,
 - optical power and
 - exposure duration
 - are concerned

2. Methods to determine the visual impairment

- Design and engineering of different test set-ups:
 - a.) Modified binoptometer with Landolt-C rings to determine the recovery time after irradiation with a high brightness LED (HB-LED) and
 - b.) Special computer monitor assisted reading test for the case of laser irradiation.

::::: Test situation during LED exposure **and visual acuity measurement**

15 May 2012

Test arrangement for laser beam exposure and reading test procedure

laser, alignment & attenuator

look into the laser beam (He-Ne)

neodymium vanadate laser, shutter apertures and attenuator

test person fixed in a chin rest and being irradiated

test person in front of the monitor

Test conditions and parameters

Source	Parameters		Number	Sum of
			of trials	trials
L A S E R	Wavelength/nm	632.8	943	1,267
		532	324	
	Exposure duration/s	0.25, 0.5, 1, 5 and 10	Different laser test conditions: 10 (2 wavelength and 5 exposure durations)	
	Maximum optical power/mW	0.783		
L L L L L L L L L L L L L L L L L L L	Colour (Wavelength/nm)	Red (640 nm)	735	2,824
		Green (520)	821	
		royal blue (460)	640	
		white	628	
	Exposure	0.25, 1, 5, and		
	duration/s	10	Total: 45 subjects	
	Maximum optical power/mW	3	4,091 irradiations, 26 different test	
			conditions	

- Helium-neon laser (632.8 nm), and
 - Frequency-doubled Nd:Yttrium
 Vanadate laser (Nd:YVO₄, 532 nm)

3. Experimental results

LED: green (0.12 mW to 1.5 mW, $t_{exp} = 1$ s to 8 s)
Visual acuity recovery time t_{VA} $t_{VA}/s \approx 3.7 \cdot \ln(energy/\mu J) - 16.2$ Laser: 632.8 nm ($P = 10 \ \mu W$ to 30 μW , $t_{exp} = 0.25 \ s$ to 10 s)
Afterimage duration t_a

$t_a/s \approx 50.6 \cdot \ln[(P \cdot t_{exp})/\mu J] - 13.4$

- Additional investigations:
 - Impairment threshold determination for other LED colours and for laser irradiation
 - Impairment with Green laser at 532 nm and
 - Comparison with values at 632.8 nm

First investigations: 4 test subjects, coarse trials

Next steps: more volunteers more colors search for threshold

IRPA 13

HB-LEDs – exposure duration 0.25 s

15 May 2012

IRPA 13

HB-LEDs – exposure duration: 0.25 s – Threshold

IRPA 13

Characteristics for colored LEDs

- Relatively large spread due to individual perception,
- Rapid rise is distinguishable especially for the green LED,
- Green shows the largest impairment time, and
- White LEDs produce larger recovery times than royal blue LEDs, although in principle white LEDs contain a blue LED whose emission is converted in a special phosphor into a broadband radiation in order to result in white via additive colour mixture

Dose relationship for laser irradiation

<mark>AΩ</mark>E

Laser irradiation (632.8 nm) in the Fovea (glare angle 0°)

$$t_{af,fovea} = 2 \cdot \{t_{af,5} \circ s \approx 25.3 \cdot \ln[(P \cdot t_{exp})/\mu J] - 6.7\} \approx 50.6 \cdot \ln[(P \cdot t_{exp})/\mu J] - 13.4$$

Red vs Green – exposure duration: 0.25 s

He-Ne Laser (0.25 s) – Threshold


```
SHG Nd-Laser (0.25 s): Visual acuity recovery time
```


- Laser and LED have been investigated as far as the capability to impair visual functions is concerned
- The respective disability threshold as a function of exposure duration has been searched
- Wavelength-dependent values have been found for both laser and LED radiation
- Individual differences in the impaired physiological visual functions do exist (up to a factor of about 8!)
- Functional relationships might be used for the derivation of protection limits as far as indirect effects like temporary blinding are concerned

Summary

... Thank you for your attention!