Paradigm Change for Optical Radiation – Temporary Blinding from Optical Radiation as Part of the Risk Assessment

Prof. a. D. Dr. Hans-Dieter Reidenbach
Cologne University of Applied Sciences
Research Laboratory Medical Technology and Non-Ionizing Radiation
Content

1. Introduction
2. Methods to determine the visual impairment
3. Experimental results
4. Summary
1. Introduction
Exposure limits and Indirect effects

- It is stated in the European Directive on artificial optical radiation 2006/25/EC that workers shall not be exposed above the **exposure limit values**, which are based on various ICNIRP guidelines.

In addition…

- … the employer shall give particular attention to **any indirect effects** amongst others such as **temporary blinding** when carrying out the risk assessment.

- Temporary blinding is the result of a dazzling or glaring light in the visual field (“field of view”)

- At the very moment the database for the evaluation of adverse effects on vision caused by flash blindness and degraded color-vision is insufficient as far as new optical sources like lasers and LEDs are concerned.
What does glare mean?

- Glare might be described as light emitting from an optical source, either a natural source like the sun or an artificial one like a lamp including an LED or a laser, with an intensity great enough to reduce a viewer's ability to see or that causes annoyance or discomfort.

 ⇒ disability and discomfort glare

- Glare is normally accompanied by more or less afterimages.
What does afterimage mean?

- An afterimage is the visual impression which appears more or less immediately after the decay of the stimulation at the site where the irradiation took place.

- Parts on the retina which have been exposed by light at a sufficient level, loose its sensitivity.

- Local adaptation results in various interpretations of the visual field as far as brightness, hue and saturation are regarded.
What is already known?

- Under normal illumination conditions people can adapt to changing luminous levels and perform well
- But even with subthreshold exposure glare might impair visual functions more or less
 - dazzling effect of a bright light source in the field of view or
 - afterimage formation, which is mainly the result of photochemical changes and some neural influence from the visual cortex
- During the refractory time, an exposed individual is visually handicapped
Goal

- Determination of the degree and duration of impairment resulting from glare, dazzle, flash-blindness and afterimages:
 - especially recovery duration of visual acuity caused by
 - a laser beam or
 - light from a lamp product like an LED

- Search for functional relations as far as
 - wavelength,
 - optical power and
 - exposure duration are concerned
2. Methods to determine the visual impairment

- Design and engineering of different test set-ups:
 a.) Modified binoptometer with Landolt-C rings to determine the recovery time after irradiation with a high brightness LED (HB-LED) and
 b.) Special computer monitor assisted reading test for the case of laser irradiation.
Test situation during LED exposure and visual acuity measurement

modified binoptometer

irradiation situation

LED source in action

recovery time

modified binoptometer

irradiation situation

recovery time
Test arrangement for laser beam exposure and reading test procedure

- Laser, alignment & attenuator
- Look into the laser beam (He-Ne)
- Neodymium vanadate laser, shutter, apertures and attenuator
- Test person fixed in a chin rest and being irradiated
- Test person in front of the monitor
- Test chart with 4 words (Arial 12 pt) for reading test

15 May 2012
Test conditions and parameters

<table>
<thead>
<tr>
<th>Source</th>
<th>Parameters</th>
<th>Number of trials</th>
<th>Sum of trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASER</td>
<td>Wavelength/nm</td>
<td>632.8</td>
<td>943</td>
</tr>
<tr>
<td></td>
<td>532</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exposure duration/s</td>
<td>0.25, 0.5, 1, 5 and 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum optical power/mW</td>
<td>0.783</td>
<td></td>
</tr>
</tbody>
</table>

LED	Colour (Wavelength/nm)			
	Red (640 nm)	735		
	Green (520)	821		
	royal blue (460)	640		
	white	628		
	Exposure duration/s	0.25, 1, 5, and 10		
	Maximum optical power/mW	3		

Different laser test conditions: **10** (2 wavelength and 5 exposure durations)

Total: 45 subjects, 4,091 irradiations, 26 different test conditions
Impression of dazzling light sources

- Helium-neon laser (632.8 nm), and
 - Frequency-doubled Nd:Yttrium Vanadate laser (Nd:YVO$_4$, 532 nm)
3. Experimental results

- **LED:** green (0.12 mW to 1.5 mW, \(t_{\text{exp}} = 1 \text{ s to 8 s} \))
- Visual acuity recovery time \(t_{\text{VA}} \)
 \[
 t_{\text{VA}} / \text{s} \approx 3.7 \cdot \ln(\text{energy}/\mu\text{J}) - 16.2
 \]
- **Laser:** 632.8 nm (\(P = 10 \mu\text{W to 30 }\mu\text{W,} \)
 \(t_{\text{exp}} = 0.25 \text{ s to 10 s} \))
- Afterimage duration \(t_{a} \)
 \[
 t_{a} / \text{s} \approx 50.6 \cdot \ln[(P \cdot t_{\text{exp}})/\mu\text{J}] - 13.4
 \]
- Additional investigations:
 - Impairment threshold determination for other LED colours and for laser irradiation
 - Impairment with Green laser at 532 nm and
 - Comparison with values at 632.8 nm
LED irradiation ("green")

First investigations: 4 test subjects, coarse trials

Next steps: more volunteers, more colors, search for threshold

Acuity time / s = 3.7\cdot\ln(\text{energy}) - 16.2

R^2 = 0.7776
HB-LEDs – exposure duration 0.25 s

Acuity duration vs. optical power for:
- Red
- Green
- Royal Blue
- White

15 May 2012
HB-LEDs – exposure duration: 0.25 s – Threshold
Characteristics for colored LEDs

- Relatively large spread due to individual perception,
- Rapid rise is distinguishable especially for the green LED,
- Green shows the largest impairment time, and
- White LEDs produce larger recovery times than royal blue LEDs, although in principle white LEDs contain a blue LED whose emission is converted in a special phosphor into a broadband radiation in order to result in white via additive colour mixture.
Dose relationship for laser irradiation

Laser irradiation (632.8 nm) in the Fovea (glare angle 0°)

\[t_a = 50.6 \cdot \ln(P \cdot t_{\text{exp}}) - 13.4 \]

After-image duration \(t_{af} \) in the Fovea:

For class 2:
- 1 mW, 0.25 s

For class 1:
- 0.39 mW, 1 s

\[t_{af,\text{fovea}} = 2 \cdot \{ t_{af,5^\circ}/s \approx 25.3 \cdot \ln[(P \cdot t_{\text{exp}})/\mu J] - 6.7 \} \approx 50.6 \cdot \ln[(P \cdot t_{\text{exp}})/\mu J] - 13.4 \]
Red vs Green – exposure duration: 0.25 s

632.8 nm, 0.25 s

532 nm, 0.25 s

class 1

15 May 2012
He-Ne Laser (0.25 s): Threshold behavior

0,0025 mJ = 2.5 µJ

0.39 mW

0.039 mW
He-Ne Laser (0.25 s) – Threshold

Threshold at about 10 μW

12 subjects

impairment duration t / s

0,00 0,02 0,04 0,06 0,08 0,10

optical power / mW

10 μW
SHG Nd-Laser (0.25 s): Visual acuity recovery time

![Graph comparing impairment duration with optical energy](image)

- **Subject 1**: Black dots
- **Subject 2**: Red dots
- **Subject 3**: Green dots
- **Subject 4**: Yellow dots

Optical Energy / mJ

- 0.39 mW
- 0.8 mW

Impairment Duration / s

15 May 2012

IRPA 13
Summary

- Laser and LED have been investigated as far as the capability to impair visual functions is concerned.
- The respective disability threshold as a function of exposure duration has been searched.
- Wavelength-dependent values have been found for both laser and LED radiation.
- Individual differences in the impaired physiological visual functions do exist (up to a factor of about 8!).
- Functional relationships might be used for the derivation of protection limits as far as indirect effects like temporary blinding are concerned.
... Thank you for your attention!