A New Look At Radiation Carcinogenesis

IRPA -13 May 2012

Prof. Otto G. Raabe
Center for Health & the Environment
University of California, Davis
Protracted Exposures To Ionizing Radiation
Evans et al. (1972)

PERCENT TUMOR CUMULATIVE INCIDENCE

CUMULATIVE SKELETAL DOSE (cGy)
DISTRIBUTION OF DEATHS FOR DAVIS BEAGLES EXPOSED TO ^{226}Ra

CONTROLS

MEDIAN LIFE SPAN FOR 435-DAY OLD BEAGLES

$t_L = 4984$ DAYS

MEDIAN BONE CANCER RISK

$\bar{d} = 582.6 \; \bar{d}^{-1/3}$

($\sigma_g = 1.22$)

MEDIAN RADIATION INJURY RISK

$\bar{d} = 7.5 \; \bar{d}^{-3}$

($\sigma_g = 1.80$)

- **BONE CANCER DEATHS**
- **RADIATION INJURY DEATHS**
- **OTHER DEATHS**
BONE CANCERS FROM 226Ra IN DAVIS BEAGLES

TIME TO DEATH, t (d)

MEDIAN LIFE SPAN
$t_L = 4938$ DAYS POST EXPOSURE

MEDIAN BONE CANCER RISK
$t = 582.6 \bar{d}^{-1/3}$
$(\sigma_g = 1.22)$

RISK = 0.95

RISK = 0.05

AVERAGE DOSE RATE TO SKELETON, \bar{d} (Gy d$^{-1}$)

O. RAABE
DISTRIBUTION OF DEATHS FOR PNL BEAGLES
AFTER INHALATION DEPOSITION IN LUNG OF 239PuO$_2$

CONTROLS

MEDIAN LIFE SPAN FOR 540-DAY OLD BEAGLES

$t_L = 4796$ DAYS

MEDIAN LUNG CANCER RISK

$t_m = 496.8 \bar{d}^{-1/3}$

($\sigma_g = 1.21$)

STUDY 1

- LUNG CANCER
- LUNG INJURY

STUDY 2

MEDIAN LUNG INJURY RISK

$t_m = 47.7 \bar{d}^{-1}$

($\sigma_g = 1.48$)

O. RAABE
BONE CANCERS FROM 226Ra AND 90Sr IN BEAGLES AT DAVIS

MEDIAN LIFE SPAN FOR 90Sr BEAGLES
$t_L = 5419$ DAYS POST EXPOSURE

MEDIAN LIFE SPAN FOR 226Ra BEAGLES
$t_L = 4984$ DAYS POST EXPOSURE

MEDIAN BONE CANCER RISK
FOR 90Sr BEAGLES
$t_{Sr} = 324.7 (\bar{d}_{Sr})^{-2/3}$

MEDIAN BONE CANCER RISK
FOR 226Ra BEAGLES
$t_{Ra} = 582.6 (\bar{d}_{Ra})^{-1/3}$

- BONE CANCER FROM 226Ra
- BONE CANCER FROM 90Sr

t: TIME TO DEATH AFTER BEGINNING EXPOSURE (d)
\bar{d}: LIFE-TIME AVERAGE DOSE RATE TO SKELETON (Gy d$^{-1}$)
DISTRIBUTION OF DEATHS FOR ITRI BEAGLES EXPOSED TO 91Y–FAP

CONTROLS

MEDIAN LIFE SPAN FOR 400-DAY OLD BEAGLES

$t_L = 4713$ DAYS

MEDIAN LUNG CANCER RISK

$t_m = 408.1 \, \bar{d}^{-2/3}$

($\sigma_g = 1.12$)

MEDIAN LUNG INJURY RISK

$t_m = 324.6 \, \bar{d}^{-1}$

($\sigma_g = 1.41$)
MEDIAN BONE AND LUNG CANCER RISKS FOR BEAGLES

TIME TO DEATH FOR BEAGLES, t (d)

MEDIAN SURVIVAL FOR UNEXPOSED

THRESHOLD REGION

MODELS: $t_m = K_m \overline{d}^{-s}$

α: $s = 1/3$ β: $s = 2/3$

AVERAGE DOSE RATE TO SKELETON OR LUNG, \overline{d} (Gy d$^{-1}$)
INCIDENCE OF FATAL CANCER IN BEAGLES FED 90Sr

CORRECTED OBSERVED / EXPECTED RATES

- BONE SARCOMA
- PERIODONTAL CARCINOMA
- ORAL/NASAL CARCINOMA
- LEUKEMIA

DOSAGE LEVEL AND MEAN DOSE (Gy)

CONTROLS (0) D05 (0.4) D10 (1.2) D20 (6.7) D30 (22.5) D40 (50.4) D50 (80.2) D60 (107.0)
RADIATION INDUCED CANCER

• Cancer Induction depends of lifetime average dose rate to the target organ.

• Cancer induction risk is not proportional to cumulative dose.

• Low dose rates yield a life span virtual threshold (cumulative doses <10 Sv).
Acute Exposures To Ionizing Radiation
Atomic Bomb Survivor Studies

- Radiation Effects Research Foundation, RERF
- 79,972 survivors with calculated rad doses
- 44,636 survivors with doses > 0.005 Sv

RERF Solid Cancer Dose Response

Excess Relative Risk

Weighted Colon Dose (Gy)
EXCESS CANCER INCIDENCE FOR 1 Sv EXPOSURES AT AGES 10, 30 & 50 YEARS

EXCESS RATE PER 10,000 PERSON-YEARS

AGE (years)
• A-Bomb Survivor Risk for 1 Gy Exposure
• Age 5: 13%/80 y; Age 25: 9.5%/60 y;
• Age 45: 6.5%/40 y. ALL = 0.16% per year
CANCER INDUCTION IS NOT PROPORTIONAL TO DOSE

• A-Bomb cancer promotion data for a very high dose-rate instantaneous exposure cannot be used to estimate cancer induction risk from protracted exposures to ionizing radiation.

• Liner models to currently used by the International Commission on Radiological Protection and the U.S. Environmental Protection Agency are not valid.
References

THE END