

Comparative analysis of the radionuclide composition in fallout after the Chernobyl and the Fukushima accidents

Sergey Shinkarev

Tasks

Chernobyl and Fukushima

- 1) Analysis of the ratios of $q(R_i)/q(^{137}Cs)$ decay-corrected to the date of the main fallout.
 - $[q(R_i)$ is ground deposition density of radionuclide $R_i]$

2) Analysis of the dependence of $q(^{131}I)/q(^{137}Cs)$ vs $q(^{137}Cs)$ decay-corrected to the date of the main fallout.

Areas considered

Chernobyl

- ► Near zone Central spot (up to 60 km)
- ➤ Far zone Gomel-Mogilev spot (centered ~200 km)

Fukushima

➤ Near zone – circle (up to ~60 km)

Chernobyl: Map of ¹³⁷Cs deposition

Fukushima: Map of ¹³⁷Cs deposition

Input data

Chernobyl

- ➤ Spectometrical measurements of soil samples. For ¹³¹I only measurements conducted up to 2 months following accidents (up to June 23, 1986).
- \triangleright Units kBq m⁻²
- Measurements were carried out by the specialists from:
 Institute of Nuclear energy (Minsk, Belarus) and
 Institute of Biophysics (Moscow, Russia)

Input data

Fukushima

- ➤ Spectometrical measurements of soil samples. For ¹³¹I only measurements conducted up to 2.5 months following accidents (up to May 31, 2011).
- \triangleright Units Bq kg⁻¹
- Measurements were carried out by Japanese specialists and placed at the website of MEXT (Ministry of Education, Culture, Sports, Science and Technology)

Task

Chernobyl and Fukushima

1) Analysis of the ratios of $q(R_i)/q(^{137}Cs)$ decay-corrected to the date of the main fallout.

 $[q(R_i)$ is ground deposition density of radionuclide $R_i]$

Average ratio of $R_{\rm i}$ to $^{137}{\rm Cs}$ in soil

Area	Average relative ratio to ¹³⁷ Cs				
	⁹⁵ Zr, ⁹⁵ Nb, ¹⁴¹ Ce, ¹⁴⁴ Ce	¹⁰⁶ Ru, ¹⁰³ Ru	¹⁴⁰ Ba, ¹⁴⁰ La	¹³² Te	¹³⁴ Cs
Central spot	2-5	1-3	3	20	0.5
Gomel- Mogilev spot	0.06-0.11	0.7-2	0.7	10	0.5
Fukushima (northwest zone)	ND	ND	traces	5-9	0.8-0.9

$$^{131}I/^{137}Cs = 3-50$$

Fukushima (near zone)

$$^{131}I/^{137}Cs = 5-80$$

Task

Chernobyl and Fukushima

2) Analysis of the dependence of $q(^{131}I)/q(^{137}Cs)$ vs $q(^{137}Cs)$ decay-corrected to the date of the main fallout.

Chernobyl: Gomel-Mogilev spot

Fukushima: 24 km north

Fukushima: 33 km north-west

Fukushima: 62km north-west

Fukushima: 30km west-northwest

Fukushima: 32km west

Fukushima: 22 km west-southwest

Fukushima: 23 km south

Discussion

Deposition velocity

-) 131_I
- (a) aerosols, $V_g \sim 1 \text{ mm s}^{-1}$;
- (b) reactive gaseous (elemental iodine), $V_g \sim 10 \text{ mm s}^{-1}$;
- (c) non-reactive gaseous (organic compounds), $V_g \sim 0.1$ mm s⁻¹.
- 137Cs
- (a) aerosols, $V_g \sim 1 \text{ mm s}^{-1}$.

Scavenging processes from the air to the ground

- Wet deposition
- Dry deposition

Conclusions

- 1) Fukushima volatile and intermediate (I, Cs, Te)

 Chernobyl all radionuclides (I, Cs, Te, Ru, Ba(La),

 Zr(Nb), Ce)
- 2) Fukushima and Chernobyl fallout ¹³¹I/¹³⁷Cs decreases with increase of level of the ¹³⁷Cs ground deposition
- 3) Revealed tendency can be used in dose reconstruction

Thank you for your attention

