

International co-operation, basic principles and developments in radiation protection metrology and measurements

Franz Josef Maringer, Andreas Steurer

BEV – Federal Office of Metrology and Surveying

Globalization of metrology

International Metre Convention

20 May 1875

"À tous le temps, à tous le peuples"

Reconnaissance mutuelle

des étalons nationaux de mesure et des certificats d'étalonnage et de mesurage émis par les laboratoires nationaux de métrologie

Paris, le 14 octobre 1999

Mutual recognition

of national measurement standards and of calibration and measurement certificates issued by national metrology institutes

Paris, 14 October 1999

Comité international des poids et mesures

Bureau international des poids et mesures

Organisation intergouvernementale de la Convention du Mètre

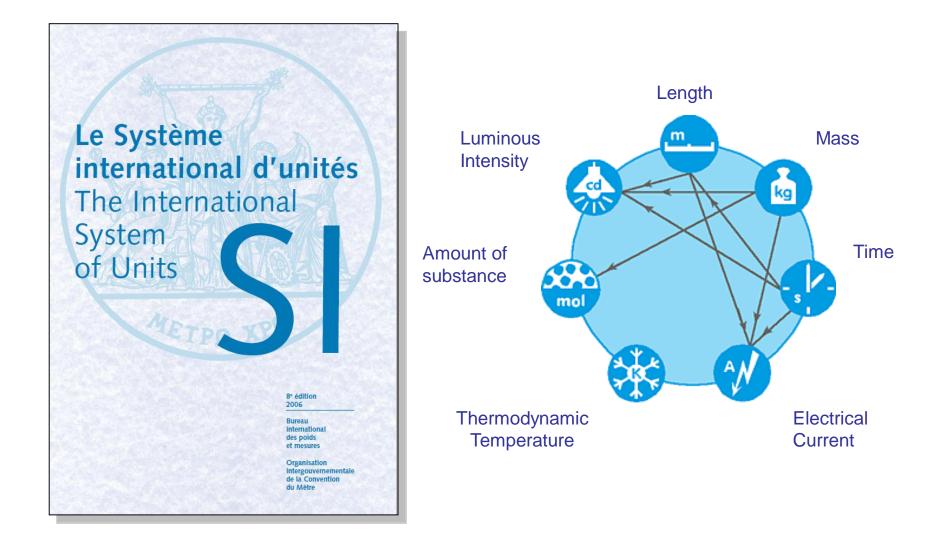
International metrological infrastructure

- Convention of the Metre (Convention du Mètre)
 - was signed in Paris in 1875 by seventeen nations
 - to act in common accord on all matters relating to units of measurement
 - remains the basis of international agreement on units of measurement
 - current fifty-four Member States, including all the major industrialized countries
- General Conference on Weights and Measures (CGPM)
- International Committee for Weights and Measures (CIPM)
- International Bureau of Weights and Measures (BIPM)

BIPM acts in matters of world metrology, particularly concerning the demand for measurement standards of ever increasing accuracy, range and diversity, and the need to demonstrate equivalence between national measurement standards.

http://www.bipm.org

Regional Metrology Organisations



International Co-operation in Metrology

	National	Europe	Worldwide
National Metrology Institutes	BBBV Bundesamt für Eich- und Vermessungswesen	EURANE European Association of National Metrotogy Institutes	BIPM
Legal Metrology	BEV (June 2014) Bundesamt für Eich- und Vermessungswesen	European Cooperation in Legal Metrology	OIML
Accredi- tation	Federal Ministry of Economy, Family and Youth	European co-operation for Accreditation	ilac

The International System of Units

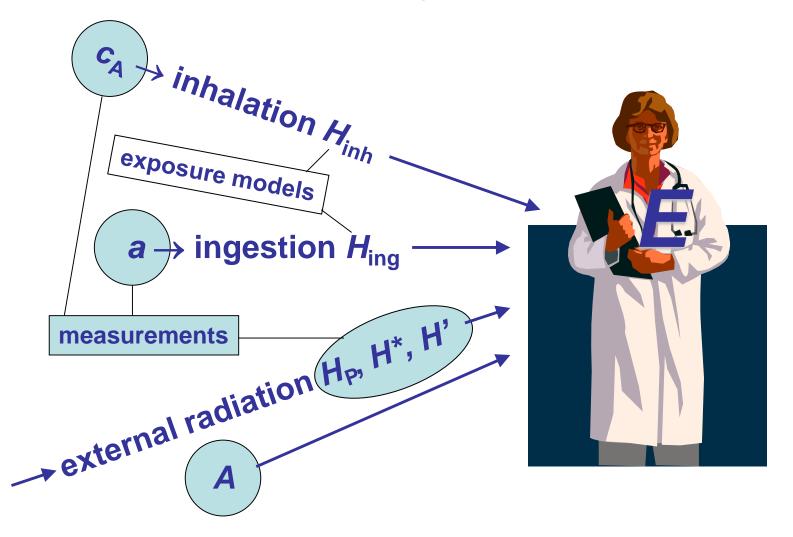
Radiation protection measurements ↔ CCRI

Consultative Committee for Ionizing Radiation (1958/1960) Comité consultatif des rayonnements ionisants

- advice to the CIPM on matters related to ionizing radiation standards
- x-ray
- γ-ray
- charged particle
- neutrons
- Radionuclide metrology / radioactivity measurement
- international reference system for radionuclides SIR

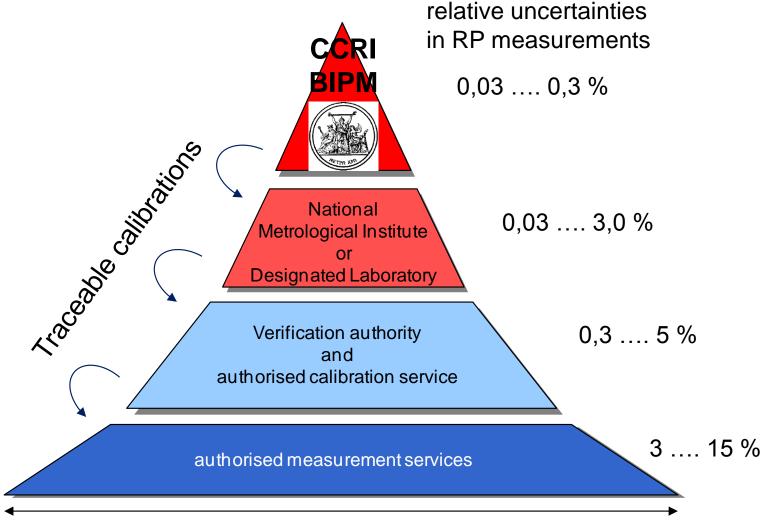
ICRM International Committee for Radionuclide Metrology

- Working groups:
 - Radionuclide Metrology Techniques
 - Life Sciences
 - Alpha-Particle Spectrometry
 - Gamma-Ray Spectrometry
 - Liquid Scintillation Techniques
 - Low-Level Measurement Techniques
 - Non-Neutron Nuclear Data
- 6th International Conference on Low-Level Radioactivity Measurement Techniques ICRM-LLRMT'12 September 17 - 21, 2012, Jeju, Korea Korea Research Institute of Standards and Science (KRISS)



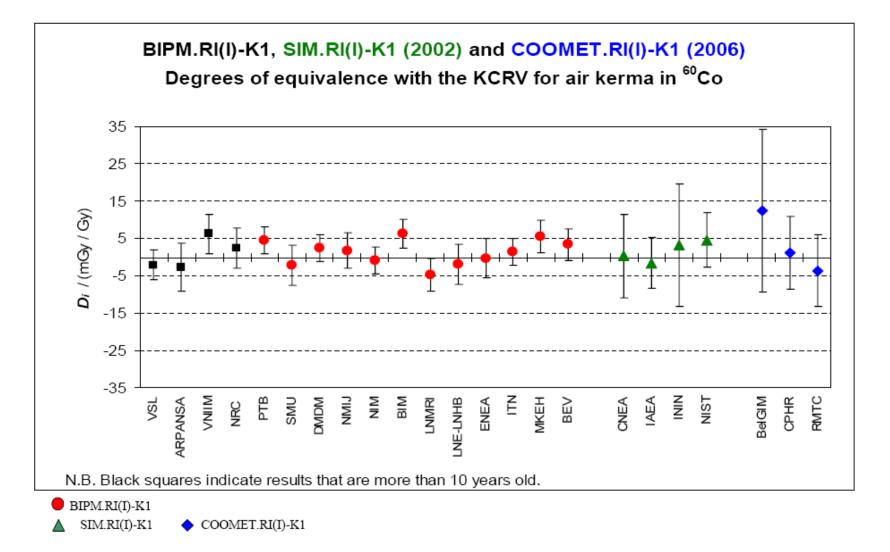
Main quantities and units in radiation protection: dose and activity

- Dose but which dose quantity?
- Sievert but for which dose quantity?
- Gray ... but for which dose quantity?
- Dosemeter ... but for which dose quantity?
- Effective dose ... E ... not directly measureable ... $Sv = J kg^{-1} = m^2 s^{-2}$
- Ambiant dose equivalent ... *H**(10), *H*^{*}(0,07) Sv
- Personal dose equivalent ... $H_P(10)$, $H_P(0,07)$... Sv
- Absorbed dose ... D ... $Gy = J kg^{-1} = m^2 s^{-2}$ e.g. absorbed dose to water D_W
- Kerma ... K ... Gy e.g. air kerma K_a
- Activity ... $A ... Bq = s^{-1}$
- Activity concentration ... a ... Bq m⁻³ or Bq kg⁻¹
- Specific activity ... a ... Bq kg⁻¹



Radiation sources \rightarrow radiation exposure

Measurement uncertainties



CCRI at **BIPM**

- Key comparisons dosimetry
 - BIPM.RI(I)-K1: Measurement of Air Kerma for Cobalt 60
 - BIPM.RI(I)-K2: Measurement of air kerma for low energy X-rays
 - BIPM.RI(I)-K3: Measurement of air kerma for medium energy X-rays
 - BIPM.RI(I)-K4: Measurement of Absorbed Dose to Water for Cobalt 60
 - BIPM.RI(I)-K5: Measurement of Air Kerma for Cesium 137

Key comparison - air kerma in ⁶⁰Co radiation

SIR at BIPM: International Reference System for γ -ray emitting radionuclides

- Ionisation chamber / ²²⁶Ra / established at BIPM 1976
- ~ 900 measurements, > 60 radionuclides

KCDB	F-18 Na-22 Na-24 Sc-46 Sc-47 Cr-51 Mn-54 Mn-56 Co-56 Co-57 Co-58 Fe-59 Co-60 Cu-64 Zn-65 Ga-67 Se-75 Kr-85 Sr-85 Y-88 Nb-95 Mo-99 Tc-99m Ru-103 Ru-106 Cd-109 Aq-110m In-111 Sn-113 I-123 Sb-124 I-125 I-131 Ba-133 Xe-133 Cs-134 Cs-137 Ce-139 Ba-140 Ce-141 Ce-144 Eu-152 Gd-153 Sm-153 Eu-154 Eu-155 Ho-166m Yb-169 Lu-177 Ta-182 Re-186 Ir-192 Au-195 TI-201 Hq-203 Pb-203 Bi-207 Rn-222 Th-228 Am-241 Am-243 Am-243 Am-243 Am-243
------	--

- results: published in the key comparison database KCDB
- efficiency curve of the ionization chamber (IC) as a function of γ -ray energy.

e.g. BEV SIR key comparisons

- 1998: Co-57, Co-60, Ba-133, Cs-137
- 2000: Eu-152
- 2001: Na-22, Mn-54, Y-88
- 2002: F-18, Zn-65, Tc-99m
- 2003: Mn-54, Ir-192, Am-241
- 2004: I-125
- 2007: I-131
- 2008: Cs-134
- 2008: Ce-139
- 2009: Co-60
- 2010/11: Cs-137
- 2011/12: Ba-133

SIR 2008 - Key comparison BIPM.RI(II)-K1.Ce-139

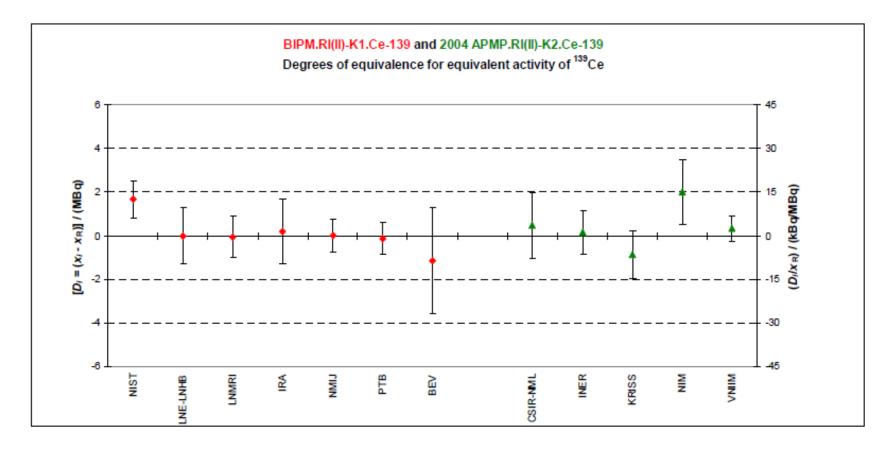
Draft B Update Report for Ce-139 2011/09/06

Update of the BIPM comparison BIPM.RI(II)-K1.Ce-139 of activity measurements of the radionuclide ¹³⁹Ce to include the 2008 results of the PTB, Germany and the BEV, Austria

C. Michotte¹, G. Ratel¹, K. Kossert², O. Nähle², F.J. Maringer³

¹BIPM, Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92310, Sèvres
 ²Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
 ³BEV - Bundesamt f
ür Eich- und Vermessungswesen, Schiffamtsgasse 1-3, 1020 Wien, Austria

Draft B Update Report for Ce-139 2011/09/06


Table 2. Standardization methods of the recent participants for ¹³⁹Ce

NMI	Method used and acronym (see Appendix 2	Half-life /d	Activity / kBq	Reference date	uncertain by met	standard nty × 100 thod of nation
				YY-MM-DD	А	В
PTB 1999	4π(PC and PPC)EC-γ coincidence 4P-PC-MX-NA-GR-CO 4P-PP-MX-NA-GR-CO	137.66 (6)	5 400	1999-11-01 0 h UT	0.06	0.14
2008	coincidence methods 4P-PC-MX-NA-GR-CO 4P-PP-MX-NA-GR-CO	137.66 (6)	4 145*	2008-02-01 0 h UT	0.06	0.23
BEV 2008	Pressurized ionization chamber 4P-IC-GR-00-00-00	137.6410	484	2008-12-01 0 h UT	0.31	0.84

* weighted mean result taking correlation into account for the uncertainties

Figure 1. Graph of degrees of equivalence with the KCRV for ¹³⁹Ce

N.B. Right -hand axis gives approximate values only

SIR 2011/12 - Key comparison BIPM.RI(II)-K1.Ba-133 Detailed Uncertainty Budget

Laboratory: BEV; Radionuclide: Ba-133 ; Ampoule number: SIR-2011 Ba-133

Uncertainty components*, in % of the activity concentration, due to

		RemarksEvaluation		Relative
			type (A or I	B) Sensitivity
				Factors
counting statistics	0,021		А	1,00E+00
weighing	0,0056		В	-1,00E+00
background		included into current mea	asurement	
impurities half life ($T_{1/2} = 3849,65$ d;	0,00037		В	-4,35E-05
u=2,20 d)	0,00019		В	3,28E-03
other effects (if relevant)	0,67	calibration factor	В	-1,00E+00
(explain)	0,029	current measurement	В	1,00E+00
	0,029	ionisation chamber	В	1,00E+00
	0,029	filling height	В	1,00E+00
combined uncertainty (as quadratic sum of all	0,68	k=1		

uncertainty components

European Metrology Research Programme (EMRP)

- 2010 2016
- Collaboration of European metrology institutes, designated laboratories, industrial and academical partners in joint research projects
- To accelerate innovation in areas where shared resources and decision-making processes are desirable due to economic factors and the distribution of expertise across different countries and sectors
- Implemented by EURAMET, organised by 22 National Metrology Institutes (NMIs), supported by the European Union and has a value of 400 M€

EMRP 2010 Call Industry / 2011-2014

JRP IND 04 MetroMETAL "Ionizing Radiation Metrology for Metallurgical Industry"

- Design of traceable measurement methods, optimized for the control of scrap loads, metal products, slag and fumes dust, according to EC, national regulations and IAEA recommendations.
- Development of standard reference sources for cast steel and slags with:
 - most frequent potential contaminant radionuclides (⁶⁰Co, ¹³⁷Cs, ¹⁹²Ir, ²²⁶Ra, ...)
 - different steel compositions, black and grey slags and fumes filters
 - different geometries, matching the cast steel probes currently used for on-line measurements

JRP IND 04 MetroMETAL "Ionizing Radiation Metrology for Metallurgical Industry"

JRP start date and duration:	1 September 2011	
JRP-Coordinator: José M. Los Arcos	1 Dezember 2011	
José M. Los Arcos, R&D Adviser, CIEMAT	Tel: +34913466288 E-ma	il: jm.losarcos@ciemat.es
JRP-Partners:		
1) BEV/PTP, Austria	8) ITN, Portugal	
2) CEA-LNHB, France	9) JRC-IRMM, EC	
3) CIEMAT-LMRI	10) MKEH, Hungary	
4) CMI, Czech Republic	11) POLATOM, Poland	
5) ENEA, Italy	12) PTB, Germany	
6) IFIN-HH, Romania	13) SMU, Slovakia	
7) IJS, Slovenia	14) STUK, Finland	

EMRP 2010 Call Environment / 2011-2014

JRP ENV09 MetroRWM Metrology for Radioactive Waste Management

- Development of standardised traceable measurement methods for solid radioactive waste - clearance levels verification and acceptance criteria verification
- Design of measurement facilities, software, calibration and testing methods.
- Development of novel instruments and methods for in-situ measurements: improved on-site radiochemical analysis, rapid in-situ screening techniques for alpha, beta and gamma emitters
- Development of a gaseous effluent monitor/sampler for stored wastes.
 key radionuclides (e.g. ³H, ¹⁴C, ²²²Rn).
- Standards and 'spiked' or characterized 'real' reference materials (concrete, steel, aluminium, cables, wood, insulator and others).
- Improvements to decay data for selected radionuclides present in nuclear wastes

MetroRWM "Metrology for Radioactive Waste Management"

		Short name	Organisation legal full name	Country
1	JRP-Coordinator	CMI	Cesky Metrologicky Institut Brno	Czech Republic
2	Funded JRP-Partner	BEV/PTP	Bundesamt fuer Eich- und Vermessungswesen, Physikalisch- Technischer Pruefdienst	Austria
3	Funded JRP-Partner	CEA	Commissariat a l' Energie Atomique et aux énergies alternatives	France
4	Funded JRP-Partner	CIEMAT	Centro de investigaciones energeticas, medioambientales y tecnologicas	Spain
5	Funded JRP-Partner	ENEA	Agenzia Nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile	Italy
6	Funded JRP-Partner	IJS	Institut Jozef Stefan	Slovenia
7	Funded JRP-Partner	JRC	JRC - Joint Research Centre -European Commission	EC
8	Funded JRP-Partner	MIKES	Mittatekniikan Keskus	Finland
9	Funded JRP-Partner	MKEH	Magyar Kereskedelmi Engedelyezesi Hivatal	Hungary
10	Funded JRP-Partner	NPL	NPL Management Limited	UK
11	Funded JRP-Partner	POLATOM	Institute of Atomic Energy POLATOM	Poland
12	Funded JRP-Partner	РТВ	Physikalisch-Technische Bundesanstalt	Germany
13	Funded JRP-Partner	SMU	Slovenský Metrologický Ustav	Slovakia

Conclusions

- $RP \Leftrightarrow$ reliable measurement methods ٠
- $RP \Leftrightarrow$ appropriate quantities and units ۲
- Danke schön! $RP \Leftrightarrow$ evaluation of measurement uncertainties •
- $RP \Leftrightarrow$ metrological traceability of instruments ٠
- $RP \Leftrightarrow$ quality management system ٠
- Service of the international / regional (e.g. European) / national ٠ metrological infrastructure to RP:
 - RP measurement methods development and verification
 - Traceability
 - Calibration and/or legal verification