Residential Radon, Smoking and Lung Cancer

Sarah C Darby University of Oxford

- Most radon exposure occurs indoors in ordinary homes
- Lung cancer risk increases with indoor radon concentration
 Smokers have bigger risks than lifelong non-smokers
- •Most radon-related cancers occur after moderate exposures
- •Most radon-related cancers occur in smokers/ex-smokers
- •Measuring radon does not reduce radon-related lung cancer
- Radon prevention in new homes is cost-effective
- •Radon remediation in existing homes rarely effective

Routes by Which Radon Enters a Dwelling

Average concentration of radon gas in UK homes: 21 Bq/m³

- •Most radon exposure occurs indoors in ordinary homes
- Lung cancer risk increases with indoor radon concentration
- •Smokers have bigger risks than lifelong non-smokers
- •Most radon-related cancers occur after moderate exposures
- •Most radon-related cancers occur in smokers/ex-smokers
- •Measuring radon does not reduce radon-related lung cancer
- Radon prevention in new homes is cost-effective
- Radon remediation in existing homes rarely effective

Radon in Homes and Lung Cancer Risk: Collaborative Analysis of Individual Data from 13 European Case-Control Studies

Darby, D Hill, A Auvinen, JM Barros-Dios, H Baysson, F Bochicchio, H Deo, R Falk, F Forastiere, S Farchi, A Figueiras, M Hakama, I Heid, N Hunter, L Kreienbrock, M Kreuzer, F Lagarde, I Mäkeläinen, C Muirhead, W Oberaigner, G Pershagen, A Ruano-Ravina, E Ruosteenoja, A Schaffrath Rosario, M Tirmarche, L Tomášek, E Whitley, HE Wichmann, R Doll Br Med J 2005;330:223-7

& Scandinavian Journal of Work Environment and Health 2006, Supplement 1

Dedicated to Olav Axelson (1937-2004)

Relative risk of lung cancer versus radon (with stratification for study, region, age, sex, & 20 categories of smoking, and adjustment for yr-to-yr variation in radon concentrations)

Estimates of the risk of lung cancer from radon in different data sets

Data	No of lung cancers	% increase per 100 Bq/m ³
European	7148	16%
indoor	(13 studies)	(95% CI 5,31)
North	3662	11%
American indoor	(7 studies)	(95% CI 0,28)
Chinese	1050	13%
indoor	(2 studies)	(95% CI 0,36)
Miners	2787 (11studies)	19%

- •Most radon exposure occurs indoors in ordinary homes
- Lung cancer risk increases with indoor radon concentration
- Smokers have bigger risks than lifelong non-smokers
- Most radon-related cancers occur after moderate exposures
- •Most radon-related cancers occur in smokers/ex-smokers
- •Measuring radon does not reduce radon-related lung cancer
- Radon prevention in new homes is cost-effective
- Radon remediation in existing homes rarely effective

Variation in risk estimate by age, sex, smoking

Risks from smoking (from European pooling study)

Smoking status	Relative risk (males)*	
Lifelong non-smoker	1**	
Current cigarette (<15 per day)	13	
Current cigarette (15-24 per day)	26	
Current cigarette (25+ per day)	40	
Ex-smoker (<10 years)	21	
Ex-smoker (10+ years)	5	
Other	8	

*Estimated after stratification by study, age, sex and region **Baseline category

Risk of lung cancer relative to lifelong non-smokers

Cumulative absolute risk of lung cancer death by age 75 (from European pooling study plus ACS lung cancer rates in never smokers)

Long term average radon (Bq/m3)

- •Most radon exposure occurs indoors in ordinary homes
- Lung cancer risk increases with indoor radon concentration
 Smokers have bigger risks than lifelong non-smokers
- Most radon-related cancers occur after moderate exposures
- •Most radon-related cancers occur in smokers/ex-smokers
- •Measuring radon does not reduce radon-related lung cancer
- Radon prevention in new homes is cost-effective
- Radon remediation in existing homes rarely effective

Numbers of radon-induced lung cancer deaths each year by long-term average radon concentration at home

■ homes (%) □ deaths (%)

Mean radon concentration in all UK homes: 21 Bq/m3

- •Most radon exposure occurs indoors in ordinary homes
- Lung cancer risk increases with indoor radon concentration
- •Smokers have bigger risks than lifelong non-smokers
- •Most radon-related cancers occur after moderate exposures
- Most radon-related cancers occur in smokers/ex-smokers
- •Measuring radon does not reduce radon-related lung cancer
- Radon prevention in new homes is cost-effective
- •Radon remediation in existing homes rarely effective

Numbers of lung cancer deaths in the UK each year by cause

Cause	No of lung cancer deaths			
Not caused by active smoking or by residential radon	4664 (13.6%)			•
Caused by radon but not by active smoking	157 (0.5%)		<u> </u>	
Caused both by active smoking and by radon:		3.3 ['] % due to radon	85.0%	86.4% due to
- in current smokers	532 (1.6%)		o5.9% due to	smoking
- in ex-smokers	421 (1.2%)	\downarrow	active	or radon
Caused by active smoking and not by radon	28,376 (83.1%)		smoking ↓ ↓	
Total UK lung cancer deaths in 2006	34,150 (100.0%)			

Just over 1000 deaths caused by radon each year, ie 1 in 500 of all deaths

- •Most radon exposure occurs indoors in ordinary homes
- •Lung cancer risk increases with indoor radon concentration
- •Smokers have bigger risks than lifelong non-smokers
- •Most radon-related cancers occur after moderate exposures
- •Most radon-related cancers occur in smokers/ex-smokers
- Measuring radon does not reduce radon-related lung cancer
- Radon prevention in new homes is cost-effective
- •Radon remediation in existing homes rarely effective

- Measuring radon does not reduce radon-related lung cancer
- Nor does producing radon maps
- What is needed is reducing exposure to the whole population in a way that is both effective and cost-effective

- •Most radon exposure occurs indoors in ordinary homes
- Lung cancer risk increases with indoor radon concentration
- •Smokers have bigger risks than lifelong non-smokers
- •Most radon-related cancers occur after moderate exposures
- •Most radon-related cancers occur in smokers/ex-smokers
- •Measuring radon does not reduce radon-related lung cancer
- Radon prevention in new homes is cost-effective
- •Radon remediation in existing homes rarely effective

Lung cancer risks pre- and post-preventive action

Lifetime cumulative lung cancer risk (%) – never/current/ex-smokers

Health gain per household

Lung cancer cases averted Average life-years gained (per lung cancer case averted) Average QALYs gained (per lung cancer case averted) Total QALYs gained (discounted)

Resource use and costs per household

Number of invitations to test & invitation cost Number of radon tests & radon testing cost Radon Prevention costs NHS lung cancer treatment costs averted Added NHS costs incurred during added life expectancy Net cost (discounted)

Output: Cost-effectiveness

Cost per Quality Adjusted Life-year (QALY) gained (discounted)

Programmes with cost per QALY gained (discounted) below ~£30k usually accepted by NICE for NHS

New homes: Cost per quality adjusted life year gained (QALY) for basic radon preventive measures (ie membranes) by mean radon concentration in area

Mean radon concentration in area (Bq/m ³)	% of national housing stock above this value	Cost per QALY (discounted)
90	<1%	£6.6k
52 [*]	5%	£8.0k
40	12%	£8.9k
30	35%	£10.3k
20	67%	£13.1k
Entire country	100%	£11.4k

*Recent policy requires membrane if mean radon \geq 52 Bq/m³ (ie 3% of measurements >200)

- •Most radon exposure occurs indoors in ordinary homes
- •Lung cancer risk increases with indoor radon concentration
- •Smokers have bigger risks than lifelong non-smokers
- •Most radon-related cancers occur after moderate exposures
- •Most radon-related cancers occur in smokers/ex-smokers
- •Measuring radon does not reduce radon-related lung cancer
- Radon prevention in new homes is cost-effective
- Radon remediation in existing homes is rarely effective

Mean radon	Cost per QALY (discounted)				
in Targetted	Action Level (Bq/m ³)*				
Area (Bq/m3)	50	100	150	200	400
60	£31.9k	£29.8k	£33.4k	£41.3k	£123.3k
64 [*]	£30.7k	£28.2k	£30.7k	£36.8k*	£101.1k
70	£28.9k	£26.0k	£27.4k	£31.5k	£76.1k
80	£26.6k	£23.5k	£23.7k	£25.9k	£52.5k
90	£24.7k	£21.7k	£21.3k	£22.4k	£39.2k
100	£23.2k	£20.3k	£19.5k	£20.1k	£31.2k

Existing homes: Effect on cost per QALY gained (discounted) by Targetted Area and Action Level

Minimum value in each row in red. Line indicates costs <£30k

*Recent policy targets areas with mean radon \geq 64 Bq/m³ (ie \geq 5% of measurements >200) and has Action Level 200 Bq/m³.

Numbers of lung cancer deaths averted by various radon policies

Policy	Total no of lung cancer deaths potentially averted every year		
New homes			
*Radon barriers in areas with >3% homes >200 Bq/m ³	5 after 10 years of policy, increasing by 0.5 each year		
†Radon barriers in all new homes	44 after 10 years of policy, increasing by 4.4 each year		
Existing homes			
*Targetting areas with >5% of homes >200 Bq/m ³	0.9 after policy fully implemented		
*Most cost-effective choice (ie targetting homes in areas with mean radon at least 60 Bq/m ³ , and			
recommending remediation at 100 Bq/m ³ or higher)	10.4 after policy fully implemented		

*As in recent policy *Possible new policy

Existing homes: Cost per QALY gained (discounted) for Action Level of 100 Bq/m3 in area with mean radon 60 Bq/m³ according to smoking status (ie most cost-effective choice)

Cost per QALY gained (discounted)			
Household of:			
population prevalence of smoking	never smokers only	current smokers only	
£27.9k	£169.1k	£9.6k	

Costs per QALY (discounted) for smoking cessation: ~£1000

Conclusions re: No of radon-induced deaths & recent policy

• About 1000 deaths caused each year by radon in the home in the UK

 Most radon-induced lung cancers in UK probably occur below currently recommended Action Level and in areas ignored by recent radon policy

Conclusions re: Possible future policies

- A policy requiring basic measures to prevent radon in all new homes across the UK would be highly cost-effective and would contribute (modestly) to reducing lung cancer mortality
- Policies to identify and remediate existing homes with high radon concentrations are unlikely to be cost-effective in the UK, and have very limited potential to reduce lung cancer mortality

The end