

Challenges in nuclear medicine radiation dosimetry

Sören Mattsson Medical Radiation Physics, Lund University and Skåne University Hospital Malmö, Sweden ICRP Committe 3

- Nuclear medicine stands for a small number of investigations compared to diagnostic radiology Examples:
- Globally (1997-2007): 1% of diagn radiological exams Sweden (2005): 2%
- USA (2006): 5% of investigations => 26% of collective dose
- Nuclear medicine is expanding
- Growing use of PET/CT and SPECT/CT (now also PET/MRI)
- Oncology and also neurological and cardiac diagnostic procedures
- Increasing use of radiotracers in surgical practices
- New radiopharmaceuticals (increasing importance of shortlived radionuclides)

Effective dose, mSv				
	100	PET/CT and SPECT/CT are high-dose investigations		
Coronary angiography				
Colon –	<u>РЕТ/С</u> 10 С	CT FDG, SPECT/CT, CT trauma (foetus) T colon CT abdomen/pelvis, PET-FDG		
^{99m} Tc-substances	I C C L	T thorax/lungs SPECT T head Low dose CT colon T facial skeleton ow dose CT lungs		
Urography Lumbar spine				
Mammography Lungs Facial skeleton Hand, foot	0.1 L	ow dose CT facial skeleton		
Teeth (single picture) –	0.01			

Nuclear medicine also for therapy

Small (Sweden 2010: 2.8%) in relation to nuclear medicine diagnostic procedures

Therapeutic nuclear medicine

- Hyperthyroidism and thyroid cancer
- Polycytemia
- Severe pain in metastatic bone disease

- Tumours (monoclonal antibodies and peptides, receptor specific substances)
- Neuroendocrine tumours
- Liver tumours

¹³¹*I-iodide* ³²*P*-orthophosphate ⁸⁹Sr-chloride ¹⁵³Sm- or ¹⁷⁷Lu-EDTMP ¹⁸⁶Re-EHDP ²²³Ra-chloride ⁹⁰Y-Zevalin ⁹⁰Y-,¹³¹I-, ¹⁷⁷Lu-, ²¹¹At-MaB ¹³¹*I-mIBG* ⁹⁰Y-, ¹⁷⁷Lu-octreotate ⁹⁰Y-microspheres (SIRT)

Dosimetry in nuclear medicine

We want to know the absorbed dose in all irradiated tissues/organs of interest

- Biokinetics
- **Dose calculations** (radionuclide decay, body geometry, organ volume, etc...)

Varying needs for accuracy in therapy and diagnostics

Therapy: better than +/- 5% (like external radiation therapy) Diagnostics: +/- say 20%

Can we meet these needs for accuracy?

The major contributor to uncertainty in absorbed dose estimations is *the activity quantification and how frequently the measurements can be done*

Biokinetics, A(t)

- Quantification of activity in organs and tissues
- Blood and excreta sampling

Methods:

- Serial planar gamma camera imaging, conjugate view method (geometric mean to anterior-posterior projections), attenuation and scatter correction
 SPECT(/CT) with attenuation and seatter corrections
- 2) **SPECT(/CT)** with attenuation and scatter corrections
- 3) PET(/CT) attenuation and scatter correction

Most quantification methods based on iterative methods

A patient measured at 5 times after injection of ¹²³I-ioflupan

 10 min
 1 h
 4 h
 24 h
 48 h

 Sydoff et al., 2012

Ten ¹²³I-ioflupan patients 10 minutes after injection

time post injection (h) Booij et al., 1998

- These are "net models" which describes what we can measure
- There is usually no unique transformation of a net model to a compartment model. (This is possible only if the structure of the compartment model is known).

¹¹¹In octreotide

front back 4 hours after inj. Activity A(r_s,t) front back 24 hours after inj.

Cumulated activity=
$$\int A(r_s,t)dt = A(r_s)$$

→ Time

Organ (S)	F_s	T (h)	а	$\widetilde{A}_s/A_0(\mathbf{h})$
Thyroid	0.001	60	1.0	0.046
Kidneys	0.06	60	1.0	2.8
Liver	0.06	2.0	0.40	2.6
		60	0.30	
		1680	0.30	
Spleen	0.05	60	1.0	2.3
Other organs and tissues	0.829	3.0	0.90	6.9
-		60	0.10	
Urinary bladder contents	1.0			
Adult, 15 years, 10 years				1.7
5 years				1.4
1 year				0.91

Biokinetic data – Indium-labelled octreotide

- S Source organ or tissue
- F_s Fractional distribution to S
- T Biological half-time for an uptake or elimination component
- a Fraction of F_s taken up or eliminated with the corresponding half-time. A negative value indicates an uptake phase.
- $\tilde{A_s}/A_o$ Cumulated activity in S per unit of adm activity

From cumulated activities to organ/tissue absorbed dose Computational models = "Phantoms"

Diagnostics: ICRP Reference phantoms

Why?

To be able to compare information between hospitals To be able to compare different investigation methods

Therapy:

Realistic phantoms tailored to the individual patient *Why?*

Weight and lenght differ

Organ masses differ

Distances between organs differ

Calculation of absorbed dose: Evolution of computational models

MIRD/ORNL Cristy and Eckermann Hermaphrodites

Dose calculations

 $\overline{D}_{(Target \leftarrow Source)} = A_{Source} \cdot S_{(Target \leftarrow Source)}$

C.20.4. Absorbed doses for ¹¹¹In-octreotide

¹¹¹ In	67.9 h	
Organ		

Organ	Absorbed dose per unit activity administered (mGy/MBq)					
	Adult	15 years	10 years	5 years	1 year	
Adrenals	5.8E-02	7.5E-02	1.1E-01	1.7E-01	2.9E-01	
Bladder	2.0E-01	2.5E-01	3.7E-01	4.6E-01	5.6E-01	
Bone surfaces	2.7E-02	3.3E-02	5.0E-02	7.5E-02	1.4E-01	
Brain	9.6E-03	1.2E-02	2.0E-02	3.2E-02	5.7E-02	
Breasts	1.2E-02	1.5E-02	2.3E-02	3.7E-02	6.7E-02	
Gallbladder	5.2E-02	6.3E-02	9.2E-02	1.4E-01	2.2E-01	
Gastrointestinal tract						
Stomach	4.3E-02	5.0E-02	7.7E-02	1.1E-01	1.8E-01	
Small intestine	2.9E-02	3.7E-02	5.9E-02	9.0E-02	1.5E-01	
Colon	2.9E-02	3.5E-02	5.5E-02	8.6E-02	1.4E-01	
(Upper large intestine	3.0E-02	3.7E-02	5.8E-02	9.4E-02	1.5E-01)	
(Lower large intestine	2.7E-02	3.3E-02	5.2E-02	7.5E-02	1.2E-01)	
Heart	2.5E-02	3.2E-02	4.8E-02	7.0E-02	1.2E-01	
Kidneys	4.1E-01	4.9E-01	6.7E-01	9.6E-01	1.6E+00	
Liver	1.0E-01	1.3E-01	2.0E-01	2.7E-01	4.8E-01	
Lungs	2.3E-02	3.0E-02	4.4E-02	6.7E-02	1.2E-01	
Muscles	2.0E-02	2.6E-02	3.8E-02	5.6E-02	1.0E-01	
Oesophagus	1.4E-02	1.8E-02	2.7E-02	4.3E-02	7.7E-02	
Ovaries	2.7E-02	3.5E-02	5.3E-02	8.0E-02	1.3E-01	
Pancreas	7.2E-02	8.8E-02	1.3E-01	2.0E-01	3.2E-01	
Red marrow	2.2E-02	2.6E-02	3.9E-02	5.3E-02	8.5E-02	
Skin	1.1E-02	1.3E-02	2.1 E-02	3.2E-02	5.9E-02	
Spleen	5.7E-01	7.9E-01	1.2E+00	1.8E+00	3.1E+00	
Testes	1.7E-02	2.2E-02	3.7E-02	5.4E-02	8.7E-02	
Thymus	1.4E-02	1.8E-02	2.7E-02	4.3E-02	7.7E-02	
Thyroid	7.5E-02	1.2E-01	1.8E-01	3.7E-01	6.8E-01	
Uterus	3.9E-02	4.9E-02	7.7E-02	1.1E-01	1.6E-01	
Remaining organs	2.4E-02	3.2E-02	4.9E-02	8.0E-02	1.3E-01	
Effective dose (mSv/MBq)	5.4E-02	7.1E-02	1.1E-01	1.6E-01	2.6E-01	

Protocols

Type of equipment/measurements

Image quantification (corrections performed; attenuation, scatter, dead time, reconstruction parameters for SPECT or PET, background subtraction)

Time points on time-activity curves. Integration

Bladder voiding interval

Dose computation model

For the effective dose calculation; Set of tissue-weighting factors Number of participant in the study

ICRP Publication 80 (Addendum 2)

10 new radiopharmaceuticals+ recalculations of 19 frequentlyused ones in Publ 53.

ICRP Publication 106 (A third amendment)

33 radiopharmaceuticals in current use. Recommendations on breast feeding interruptions.

^{99m}Tc-substances

 E/A_o , μ Sv/MBq

PET-substances

 E/A_o , μ Sv/MBq

²⁰¹Tl- ^{131,125,123}I-, ¹¹¹In-, ⁷⁵Se-, ⁶⁷Ga-, ⁵¹Cr-, ¹⁴C-, ³H-substances

Can we meet the accuracy requirements?

Therapy: No and Yes?

Diagnostics: Yes and No

Serial planar imaging scans + SPECT in combination +/- 10-20% PET +/- 10% if very accurate attenuation, scatter and random corrections

"...the accuracy of quantifying the concentration of a radionuclide in regions within the body can be < 5% with SPECT or PET imaging, and provided there are no overlapping structures containing radioactivity, similar accuracy can also be obtained with planar gamma camera imaging" (Frey et al., 2012)

Challenges (Diagnostics):

- •For some substances biokinetic data are old (more than 20 years). Need to generate new data on biokinetics and dosimetry using state-of-the-art equipment
- •Few subjects per study. More volunteers are needed.
- Biokinetic data for children
- •Biokinetic data for various ages
- •Gender specific data
- •Biokinetic data for ill
- •More uniform dosimetry protocols
- •Dose distributions within organs and tissues
- •Review of CT protocols for SPECT/CT and PET/CT imaging. DRLs
- •Epidemiological studies

Challenges (Therapy):

- •Dose planning before therapy, No therapy without dose planning!
- Individual patient biokinetics
- Individual dose calculations
- •Dose distributions within organs and tissues
- •Same protocol for different hospitals and clinics for measurements of biokinetic data and for dosimetry
- •A formalism for the addition of doses from nuclear medicine therapy and external radiation therapy for patients receiving both treatments (BED)

Thank you for listening!

... and don't forget to collect biokinetic data from your patients!

soren.mattsson@med.lu.se

Task Group on Radiation Dose to Patients from Radiopharmaceuticals