The Transport of Nuclear Fuel Cycle Materials

Presented by Garry Owen on behalf of Henry-Jacques Neau

World Nuclear Transport Institute

IRPA – Glasgow 17th May 2012
Today’s Presentation

- Introduction to WNTI
- Materials of the Fuel Cycle
- Unique Aspects of Transport
- Safety Concept
- Radiation Protection Barriers
- Regulatory Structure
- Future Demand
- Transport Regulations
- Radiation Protection Programmes
- WNTI Initiatives
- Stakeholder Engagement
The World Nuclear Transport Institute

- World Nuclear Transport Institute (WNTI)
- Formed 14 years ago and now comprises over 45 member companies covering all aspects of nuclear fuel cycle transport
- Dedicated to present the industry perspective
The Transport of Nuclear Fuel Cycle Materials

- Mining
- Conversion
- Enrichment
- Fuel Fabrication
- Spent Fuel
- MOX
- Plutonium
- Wastes - LLW
- Waste - ILW,
- Waste - HAW
What’s unique for transport?

On-site Activities
- Private premises
- Restricted Access
- Controlled environment

Off-site transports
- In the public domain
- Freedom of movement
- Less controllable environment

Robust radiation protection systems must be employed to maintain radiological safety under both normal and accident conditions for all radioactive materials.
Dosimetric Model - The Safety Concept

Q System

- Photon dose
- Beta dose
- Inhalation dose
- Skin deposition
- Immersion dose

Assigns a hazard value 'A value'
Radiation Protection Safety Philosophy for Transport

Four key protection mechanisms;

• Physical Barriers
• Operational Barriers
• Training - Knowledge sharing
• Management Systems
Physical Barriers

- Accurate content classification
- Graded approach
- 'High hazard' contents require 'accident proof' packaging
- Less robust packaging is permitted for 'Low hazard' contents
- Fissile materials must remain safely sub critical under all defined conditions
- Reducing dose through shielding design.
Operational Barriers

- Radiation protection programmes
 - Dose Assessment
 - Segregation
 - Emergency Response
- High levels of cleanliness
- Segregation and stowage
- Heat generation considerations
- Visual warnings, label marking and
- Emergency arrangements
Training & Management Systems

Training- Knowledge sharing/transfer
• 'General awareness' 'functional specific'
• Security Training
• Sustainable and effective
• Ageing staff, new blood

Management Systems
• Comprehensive processes
• Consistent application of regulatory requirements
• Check and review – Learning from experience
The IAEA Regulatory Structure

IAEA Safety Standards
for protecting people and the environment

Regulations for the Safe Transport of Radioactive Material
2009 Edition

Safety Requirements
No. TS-R-1

IAEA TS-G-1.1
IAEA TS-G-1.2
IAEA TS-G-1.3
IAEA TS-G-1.4
IAEA TS-G-1.5
IAEA TS-G-1.6

Advisory Material
Emergency Response
Radiation Protection Programmes
Management Systems
Compliance Assurance
Schedules
The Future Demand

• Nuclear power is expanding; increasing the demand for fuel cycle services and nuclear transporters

• A reliable and effective transport infrastructure plays a vital role in maintaining high quality, compliant transport in this growing market
WNTI Initiatives

- Facilitating compliance through developing best practice guides
- Preparation of information papers to the nuclear fuel cycle supply chains
- Preparation of Radiation Protection Programme templates to assist and encourage carriers
Stakeholder Engagement

- Delivering transport training to stakeholders in co-operation with the IAEA
- Combating the causes of denials of shipment through the International Steering Committee.
- WNTI are working hard to improve the public acceptability of nuclear fuel cycle materials through
 - Good science, high quality communications
 - Actively listening, being responsive and remaining transparent
Summary

- Radiation protection philosophy lies at the heart of the transport regulations
- The transport of Nuclear Fuel Cycle materials has an impeccable safety record
- Radiation doses to workers and the public have been well within the regulatory limits, typically less than 1mSv/year
- WNTI remains proactive in the development of transport safety initiatives, such as 'information papers', and sharing 'good practice' throughout all the parties in the nuclear fuel cycle.
Thank you for your attention

Contact:
World Nuclear Transport Institute
Remo House
310-312 Regent Street
London, W1B 3AX
Tel: +44 (0) 207 580 1144
Email: wnti@wnti.co.uk garry.c.owen@innuserv.com

Glasgow Anderston motto in 1824, ‘the one flourishes with the help of the others’