IRPA9

1996 International Congress on Radiation Protection April 14-19,1996 Vienna, Austria

FORM FOR SUBMISSION OF ABSTRACTS (Instructions for preparation on reverse)

FOR OFFICIAL USE ONLY								
Abstract No. 90779								
Receipt								
Author 20663								
Acceptance								
Mini-Presentation								

				PER-SENSITIVE MATERIAL AND HOT AIR HEATING						
AUTHOR(S) NAME(S) R. A. Tawil, K. J. Velbeck, J. E. Rotunda, M. Moscovitch										
SUBMITTING	AUTHOR								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
LAST NAME	VELBECK				FIRST	TNAME K	enneth J.	TITLE	Group Leade	
AFFILIATION	BICRON	NE				TEL	216/349-6960	ext.	•	
STREET	6801 Co	chran	Road			FAX	216/349-7442			
CODE		CITY	SOLON,	ОН	44139	COU	NTRY USA			
PRESENTING	AUTHOR	(IF DIF	FERENT)			****				

MAJOR SCIENTIFIC TOPIC NUMBER .4.1. (see page 7)

ABSTRACT (See instructions overleaf)

A completely portable and self-contained environmental dosimetry system, based on proven hot-gas TLD technology and enhanced with hyper-sensitive TL material, neural network dose computation, and requiring only electrical power for operation is presented and performance testing is discussed. The dosimeter is composed of a symmetric holder containing proper filtration to measure Hp*(10), Hp*(0.07) and discriminate low, intermediate and high energy environmental radiation. The TLD material is newly developed LiF:Mg,Cu,P mounted on Kapton® or sandwiched between Teflon® sheets. The new TLD material is tissue equivalent and is shown to be well suited for environmental dosimetry with higher sensitivity, more uniform response with respect to energy, and negligible fade. The TLD Workstation is equipped with an Air Supply Unit and provides portable field readout capability. The workstation is composed of a TLD reader, associated application software system, and a personal computer. The workstation software provides instrument control, data acquisition and storage, QC monitoring, and dose calculation algorithm. A new aspect of QC monitoring is the glow curve analyzer, which provides automatic screening to identify abnormal glow curves. The recently developed neural network-based algorithm computes the desired dose quantities more accurately than a simple dosimeter reading or a decision tree dose algorithm. This environmental dosimetry system was designed to comply with the current ICRP requirements and the proposed ANSI requirements.