# **Overview of Effects and Protection of Non-Ionizing Radiation**

# Maila Hietanen, Professor Finnish Institute of Occupational Health Helsinki, Finland





## ICNIRP



- International Commission on Non-Ionizing Radiation Protection
- Independent scientific organization
- Provides guidance and advice on the prevention of health hazards of nonionizing radiation
- 13 invited members
- ♦ 4 Standing Committees covering:
  - —Epidemiology
- Biology

-Physics

- Optical radiation
- http://www.icnirp.de

MH, 19 May 2000, Hiroshima, Japan



# Spectral ranges and health effects of optical radiation

| Spectral range                    | Wavelength<br>range | Ocular effects                     | Skin effects             |  |
|-----------------------------------|---------------------|------------------------------------|--------------------------|--|
| UV-C                              | 100 - 280 nm        | Photokeratitis                     | Erythema                 |  |
| UV-B                              | 280 -315 nm         | Photokeratitis                     | Erythema<br>Skin cancers |  |
| UV-A                              | 315 - 400 nm        | Photochemical<br>cataract          | Skin cancers             |  |
| Visible                           | 400 - 770 nm        | Retinal injury                     |                          |  |
| IR-A                              | 770 nm - 1.4 m      | Retinal injury<br>Thermal cataract | Skin burn                |  |
| IR-B                              | 1.4 - 3 m           | Corneal burn                       | Skin burn                |  |
| IR-C                              | 3 m - 1 mm          | Corneal burn                       | Skin burn                |  |
| MH, 19 May 2000, Hiroshima, Japan |                     |                                    |                          |  |

# Spectral irradiance of arc-jointing process (zinc coated steel)



MH, 19 May 2000, Hiroshima, Japan



# Exposure guidelines for optical radiation

- ACGIH TLVs for visible light, IR and UV radiation (occupational)
- ICNIRP guidelines for

  - -laser radiation (180 nm 1000 m; 400 nm 1.4 m)
  - —broad-band optical radiation (0.38 to 3 m)



## Visible radiation (light)

- Detailed data on spectral radiance or spectral irradiance required if the luminance of the source > 1 cd/cm<sup>2</sup>
- Photochemical and thermal hazards shall be considered separately
- $\blacklozenge$  Weighting functions: B\_{\!\lambda} for "blue-light" and R\_{\!\lambda} for "burn hazard"



#### **Spectral weighting curves**





## SED for UV

#### Standard Erythemal Dose (SED)

- Equivalent to 100 Jm<sup>-2</sup> of any source, efficiency normalised at 297 nm
- Examples:
  - -3 SED correspond to non-painful erythema
  - —6 SED is painful
  - —10 SED is lethal for many epidermal cells or corneal epithelium





# UV Index (UVI)

- Measure of the solar UV radiation levels relevant to health effects
- Used for public information
- Dimensionless number
  - -maximum at Equator 15
  - —in Australia up to 11
  - —in Finland up to 7





#### Effects on the retina

#### Thermal injury to the retina (400 - 1400 nm)

-scotoma (blind spot)

-lasers or intense xenon-arc sources

 Blue-light photochemical injury to the retina (400 - 550 nm)

---photoretinitis ("eqlipse blindness")

-welding arcs

—sun

---photofloods

MH, 19 May 2000, Hiroshima, Japan



#### Effects on the lens and cornea

Near-infrared thermal hazards to the lens
 (800 - 3000 nm)

—average corneal exposure in sunlight 10 W/m<sup>2</sup>

-exposure of glass and steel workers 0.8 - 4 kW/m<sup>2</sup>

 Thermal injury of the cornea and conjunctiva (1400 nm - 1 mm)

-laser radiation exposure



# Laser radiation





#### Image formation on the retina





### Laser applications

- Construction
  - —alignment laser (tunnels, pipes)
  - -distance measurement
- Manufacturing
  - —material processing (mirowelding, surface treating)
  - -printing plates
- Medical facilities

- Consumer and office products
  - —laser displays (sound and light shows)
  - —laser point-of-sale terminals
  - —office machines (printers, data recording)
- Military
- Research





# Characteristics and applications of various types of laser

| Active medium | Examples          | Wavelengths<br>(nm)       | Applications                                       |
|---------------|-------------------|---------------------------|----------------------------------------------------|
| Gas           | He-Ne             | 543.5, 632.8,<br>1152.6   | Alignment, barcode scanning, printing, measurement |
|               | CO <sub>2</sub>   | 10 600                    | Cutting, welding, surgery                          |
|               | Argon-ion         | 488, 514.5                | Entertainment, surgery, printing, measurement      |
| Liquid        | Dye lasers        | 310-1200<br>dye dependent | Entertainment, medical diagnosis, measurement      |
| Solid         | Neodymium:<br>YAG | 1064, 532                 | Cutting, welding,<br>entertainment, surgery        |
|               | Ruby              | 694.3                     | Holography, surgery                                |
| Semiconductor | Various           | 600-29 000                | Communicatins, pointers, compact disc palyers      |

MH, 19 May 2000, Hiroshima, Japan



| NORME<br>INTERNATIONALE<br>INTERNATIONAL<br>STANDARD                            | CE<br>IEC<br>825-<br>Première éditi<br>First editic<br>1993-1 |
|---------------------------------------------------------------------------------|---------------------------------------------------------------|
| PUBLICATION GROUPÉE DE SÉC<br>GROUP SAFETY PUBLICATION                          | URITÉ                                                         |
| Sécurité des appareils à laser –                                                |                                                               |
| Partie 1:<br>Classification des matériels, prescri<br>et guide de l'utilisateur | ptions                                                        |
| Safety of laser products –                                                      |                                                               |
| Part 1:<br>Equipment classification, requireme<br>and user's guide              | nts                                                           |
|                                                                                 |                                                               |
|                                                                                 |                                                               |
|                                                                                 |                                                               |
|                                                                                 |                                                               |
|                                                                                 |                                                               |
| IEC                                                                             | Numéro de référence<br>Reference numbe<br>CEI/IEC 825-1: 199  |

MH, 19 May 2000, Hiroshima, Japan



# Typical values of electric and magnetic fields

| Source                                   | Distance          | Electric field strength  | Magnetic flux<br>density |
|------------------------------------------|-------------------|--------------------------|--------------------------|
| 400 kV power lines                       | 25 m from midline | 1 - 10 kVm <sup>-1</sup> | 8 - 40 T                 |
| Electrical appliances                    | 30 cm             | 10 - 250 Vm⁻¹            | 0.01 - 30 T              |
| Background fields at home and in offices | Ambient levels    | 1 - 10 Vm <sup>-1</sup>  | 0.01 - 1 T               |
| TVs and VDUs                             | 30 cm             | 1 - 10 Vm <sup>-1</sup>  | up to 0.2 T              |



#### Sources of RF exposure

| Source            | Frequency                | Distance      | Exposure                | Power         |
|-------------------|--------------------------|---------------|-------------------------|---------------|
| LF radio          | 130-285 kHz              | 300 m         | 90 V/m                  | 1.8 MW        |
| MF radio          | 415-1606.5 kHz           | 50 m          | 450 V/m                 | 1.8 MW        |
| HF radio          | 3.95-26.1 MHz            | 50 m<br>220 m | 121 V/m<br>27.5 V/m     | 750 kW        |
| Walkie-<br>Talkie | 27 MHz                   | 5cm           | < 1000 V/m<br>< 0.2 A/m | several Watts |
| UHF TV            | 470-890 MHz              | 1.5 km        | < 5 mW/m <sup>2</sup>   | < 5 MW        |
| VHF TV            | 47-68 MHz<br>174-230 MHz | 1.5 km        | < 20 mW/m <sup>2</sup>  | 100 - 300 kW  |



## Sources of RF exposure (continued)

| Source           | Frequency    | Distance           | Exposure                                          | Power        |
|------------------|--------------|--------------------|---------------------------------------------------|--------------|
| FM stations      | 87.5-108 MHz | 1.5 km             | < 50 mW/m <sup>2</sup>                            | < 100 kW     |
| Microwave oven   | 2.45 GHz     | 5 cm<br>1 m        | < 10 W/m <sup>2</sup><br>< 0.25 mW/m <sup>2</sup> |              |
| Security systems | 0.9-10 GHz   | within system      | < 2 mW/m <sup>2</sup>                             |              |
| Radar stations   | 1-10 GHz     | 0.1-1 km<br>< 1 km | 0.1-10 W/m <sup>2</sup><br>< 0.5 W/m <sup>2</sup> | 0.2-20 kW    |
| Traffic radar    | 9-35 GHz     | 3 m<br>10 m        | < 250 mW/m²<br>< 10 mW/m²                         | 0.5 - 100 mW |



# ICNIRP

- Guidelines for limiting exposure to timevarying electric, magnetic, and electromagnetic fields (up to 300 GHz)
- Statement on Health issues related to the use of hand-held radiotelephones and base transmitters



### **ICNIRP - Basic restrictions**

| Frequency        | Parameter                         | Effect                                                    |
|------------------|-----------------------------------|-----------------------------------------------------------|
| 1 Hz - 10 MHz    | Current density, Am <sup>-2</sup> | Effects on nervous system                                 |
| 100 kHz - 10 GHz | SAR, Wkg⁻¹                        | Whole-body heat stress<br>and localized tissue<br>heating |
| 10 - 300 GHz     | Power density, Wm <sup>-2</sup>   | Heating in tissue at or near the body surface             |





MH, 19 May 2000, Hiroshima, Japan



# Basic restrictions for general public exposure (10 MHz - 10 GHz)

|                    | Whole-body<br>average SAR<br>(W/kg) | Localized SAR<br>(head and trunk)<br>(W/kg) | Localized SAR<br>(limbs)<br>(W/kg) | Averaging<br>time<br>(min) | Averaging<br>mass<br>(g) |
|--------------------|-------------------------------------|---------------------------------------------|------------------------------------|----------------------------|--------------------------|
| ICNIRP             | 0.08                                | 2                                           | 4                                  | 6                          | 10                       |
| EC Council         | 0.08                                | 2                                           | 4                                  | 6                          | 10                       |
| ANSI/ IEEE         | 0.08                                | 1.6                                         | 1.6                                | 30                         | 1                        |
| TTC/MPT<br>(Japan) | 0.08                                | 2                                           | 4                                  | 6                          | 10                       |



# Reference Levels for general public exposure at various RF-frequencies

|                    | Power density (W/m <sup>2</sup> ) |         |          |                         |
|--------------------|-----------------------------------|---------|----------|-------------------------|
|                    | 450 MHz                           | 900 MHZ | 1800 MHz | Averaging<br>time (min) |
| ICNIRP             | 2.3                               | 4.5     | 9        | 6                       |
| EC Council         | 2.3                               | 4.5     | 9        | 6                       |
| ANSI/ IEEE         | 3                                 | 6       | 12       | 30                      |
| TTC/MPT<br>(Japan) | 0.3                               | 0.6     | 1        | 6                       |





MH, 19 May 2000, Hiroshima, Japan



#### Main beam from an antenna mounted on a tower



MH, 19 May 2000, Hiroshima, Japan

#### Measurements of Public Exposure at 26 Sites in Sweden (Y Hamnerius and T Uddmar 1999)

| Location                                    | Max                  | Mean                 | Median               |
|---------------------------------------------|----------------------|----------------------|----------------------|
|                                             | (mW/m <sup>2</sup> ) | (mW/m <sup>2</sup> ) | (mW/m <sup>2</sup> ) |
| City                                        | 3.01                 | 0.8                  | 0.5                  |
| Town                                        | 0.049                | 0.034                | 0.033                |
| Rural                                       | 0.006                | 0.0016               | 0.0006               |
| Indoors                                     | 0.0115               | 0.0055               | 0.005                |
| Office<br>(1.6 m from DECT<br>base station) | 3.7                  | 0.154                | -                    |



# Research on biological effects of EMF

- Nervous system
- Cardiovascular systems
- Endocrine and immune systems
- Reproduction and development
- Genetics
- Cancer
- Auditory perception
- Ocular effects



### COST 244 and COST 244bis

- European Co-operation in the Field of Scientific and Technical Research (COST)
- Biomedical Effects of Electromagnetic Fields

   —COST 244: 1992-1996
   —COST 244bis: 1996-2000
- 200 national research groups,
   > 600 scientists, > 140 research institutes
- http://www.radio.fer.hr/COST244



### **COST - Specific Topics**

- Human epidemiology
- Occupational medicine
- Hypersensitivity to electricity
- Design perfomance and evaluation of experiments
- Interaction mechanisms leading to biological effects
- Experimental and numerical dosimetry



## WHO -International EMF project



- Duration 1996-2005
- In collaboration with international agencies and organizations
- ♦ Aims:
  - pooling resources and knowledge concerning effects of exposure to EMF
  - -identify gaps in knowledge
  - -critical reviews of the scientific literature
  - --international consensus and resolution on the health concerns

#### http://www.who.int/peh-emf



# Guidelines on limiting exposure to non-ionizing radiation - ICNIRP 7/99



- Collection of the guidelines on limiting exposure to non-ionizing radiation and statements on special applications
- ICNIRP Guidelines for:
  - -airborne ultrasound
  - -static magnetic fields
  - -electromagnetic fields (up to 300 GHz)
  - -UV radiation
  - -laser radiation
  - -broad-band optical radiation



# Guidelines on limiting exposure to non-ionizing radiation - ICNIRP 7/99



#### ICNIRP Statements on:

- -radiation risks from visual display units
- -fluorescent lighting and malignant melanoma
- -UV sunbeds
- -light emitting diodes
- -laser pointers
- health issues related to mobile telephones and base stations
- -safety aspects of magnetic resonance imaging
- ◆ ISBN 3-9804789-6-3

