Studies on Apoptosis in Bone Tumor Cells Induced by 153Sm

Shou-peng Zhu, Dong Xiao and Xiao-feng Han

Faculty of Radiological Medicine, Suzhou Medical College, Suzhou, China

INTRODUCTION

The favourable characteristics of radionuclide 153Sm-EDTMP (Ethylene diaminetetramethylene phosphonate) permit optimal internal radiotherapy for clinical application (1). Now 153Sm-EDTMP has been used in patients requiring analgesia for pain arising from disseminated skeletal metastasis unresponsive to all appropriate conventional treatment modalities (2). 153Sm-EDTMP is effective not only in alleviating the pain of disseminated skeletal metastasis, but also in treatment of recurrent pain (3). But up to date, its mechanism in the treatment of painful skeletal metastasis is still unknown (4). No such studies were reported yet. Only studies on clinical and clinicopathologic responses to treatment with 153Sm-EDTMP showed that the major adverse side effects of treatment were platelet and white blood count depression (5). So we observed apoptosis in bone tumor cells induced by 153Sm-EDTMP internal irradiation.

EXPERIMENTAL METHODS AND RESULTS

1. Cell culture conditions

Bone tumor cells were harvested and maintained in RPMI 1640 (GIBCO) supplemented with 10% fetal calf serum, 100u/ml penicillin, 100µg/ml streptomycin, 2mmol/L l-glutamine as well as 5×10^{-5}mol of 2-mercaptoethanol, which was known as the complete RPMI 1640 medium. The tumor cells were kept in an atmosphere containing 5% CO$_2$ at 37°C and used when in exponential growth (6). Cells were harvested from exponential-phase maintenance cultures using trypsin:versene (0.05:0.02%) treatment of monolayer cultures. Thereafter, the bone tumor cells were washed three times with Ca$^{2+}$ and Mg$^{2+}$ free Hanks solution. Single cell suspensions were prepared with complete RPMI 1640 medium and the cells were counted using a hemocytometer. Finally, the suspensions were adjusted to a concentration of 2×10^6 cells/ml.

153Sm-EDTMP with radioactive and chemical purity was used in this study. The bone tumor cell suspensions at 2×10^6 cells/ml was added 1 ml of 153Sm-EDTMP solution with radioactivity of 3.7×10^2 kBq/ml in complete RPMI 1640 medium in a 24-well microtitration plate. Then the cells were incubated in a 5% CO$_2$ atmosphere at 37°C for different intervals with 153Sm-EDTMP.

2. Fluorescence microscopic observations

The bone tumor cells were suspended in complete RPMI 1640 medium to form suspensions at 2×10^5 cells/ml. 1 ml of the cell suspension was added to 24-well microtitration plate. Then 1 ml of 153Sm-EDTMP with radioactivity of 3.7×10^2 kBq/ml also in complete RPMI 1640 medium was added to each experimental well. To control wells, only 1 ml RPMI 1640 medium was added. The microtitration plates were then incubated in 5% CO$_2$ at 37°C for 3, 6, 9, 12 and 24 h. After internal irradiation with 153Sm for different intervals, the tumor cells were harvest, and washed 5 times with Hanks solution in order to remove the free radioactivity of 153Sm-EDTMP. After a while, the bone tumor cells were suspended in hypotonic fluorescent solution which consist of 50 mg/ml pyridine iodide and 0.1% sodium acetate as well as 0.1% triton X-100 (7), in order to examine the morphology of nuclei of bone tumor cells.

The experimental results indicated that fluorescence microscopic appearance of PI-stained nuclei of the control bone tumor cells after 12-h incubation in RPMI 1640 medium alone was shown that the tumor cells showed heterogeneous nuclear chromatin. While bone tumor cells internally irradiated with 153Sm-EDTMP displayed marked nuclear fragmentation as well as show marked pyknosis in nuclei. A tremendous fragmentation and the apoptotic bodies formation were observed in the nuclei of tumor cells as shown in specimens.

3. Electron microscopic observations

Experimental bone tumor cells were suspended in complete RPMI 1640 medium to form suspension at 2×10^6 cells/ml. The tumor cell suspensions of 1 ml were added to 24-well microtitration plate. Then 1 ml of 153Sm-EDTMP with 3.7×10^2 kBq/ml also in complete RPMI 1640 medium was added to each experimental well. To control wells, 1 ml RPMI 1640 medium was added only. The microtitration plates were then incubated in a 5% CO$_2$ atmosphere at 37°C for 3, 6, 9, 12 and 24 h. After internal irradiation, tumor cells were harvested and washed 5 times with Hanks solution in order to remove the free radioactivity of 153Sm-EDTMP. After a while, the bone tumor cells were suspended in hypotonic fluorescent solution which consist of 50 mg/ml pyridine iodide and 0.1% sodium acetate as well as 0.1% triton X-100 (7), in order to examine the morphology of nuclei of bone tumor cells.

The experimental results indicated that fluorescence microscopic appearance of PI-stained nuclei of the control bone tumor cells after 12-h incubation in RPMI 1640 medium alone was shown that the tumor cells showed heterogeneous nuclear chromatin. While bone tumor cells internally irradiated with 153Sm-EDTMP displayed marked nuclear fragmentation as well as show marked pyknosis in nuclei. A tremendous fragmentation and the apoptotic bodies formation were observed in the nuclei of tumor cells as shown in specimens.
for 1 h. The specimens were dehydrated with 30, 50, 70, 80, 90 and 100% (volume fraction) acetone one by one (8). Next, the tumor cells were infiltrated with a miscible liquid with both dehydrating agent and embedding agent. So that the embedding agent could replace dehydrating agent fully. Epoxy resin 618 was exploited as embedding agent. The embedded tissues were cut into ultrathin sections with 0.05µm thick by an ultramicrotome. The sections were mounted on the copper grids which were previously covered with support film of collodion.

The specimens were stained as follows: First of all, the experimental copper grids were immersed in 2.5% (mass fraction) aqueous uranyl acetate for 3 min at room temperature in the darkroom, then rinsed with distilled water thoroughly. After drying, stained in lead citrate solution for 30 min, rinsed with distilled water again. After drying in dust free air, the grids were stored in dust free container and ready for viewing by the electron microscope H-600.

Control bone tumor cells has the ultramicrostructural features of heterogeneous nuclear chromatin. While after internal irradiation with 153Sm-EDTMP tumor cells could show fragmentation of chromatin, the margination of condensed chromatin and the membrane-bounded apoptotic bodies.

4. DNA chain fragmentation

Bone tumor cells were harvested, washed with Hanks solution and centrifuged. Thereafter, the suspension of cells were adjusted to a concentration of 1×10^6 cells/ml in complete RPMI 1640 medium. Then 37 kBq 3H-TdR (9) were added to each 1×10^6 cells/ml bone tumor cells and were incubated in a 5% CO_2 atmosphere at 37°C through 6 h. The labelled bone tumor cells were harvested again and washed with Hanks solution in order to remove the free 3H-TdR. 1 ml of the bone tumor cells suspension in complete RPMI 1640 medium of 1×10^6 cells/ml was added to each well of 24-well microtitration plate (10). Then, 1 ml of 153Sm-EDTMP with 3.7×10^2 kBq/ml in complete RPMI 1640 medium was added to each experimental well. To control wells 1 ml RPMI 1640 medium was added only. The microtitration plates were then incubated in humidified atmosphere of 5% CO_2 incubator at 37°C through 3, 6, 9, 12 and 24 h. In order to detect the cpm caused by 153Sm remaining in the cells, parallel samples were cultured without 3H-TdR. After each interval culture, the cells of each sample were gathered by multicanal cell collector apparatus onto a No.49 glass fibre filter, dried at 50°C, dropped into 5 ml scintillation cocktail with 0.4% (mass fraction) PPO and 0.04% POPOP in xylene. Their radioactivities were determined with a Beckman LS 6800 liquid scintillation counter. Experimental results are expressed as:

\[
\text{Fraction of DNA chain fragmentation, } \% = \frac{\text{Control cpm} - \text{Experimental cpm}}{\text{Control cpm}}
\]

It can be seen from Table 1 that the fraction of DNA chain fragmentation in bone tumor cells increased progressively, while the interval of 153Sm-EDTMP internal irradiation prolonged gradually. Especially on 9 to 24 h after 153Sm-EDTMP internal irradiation, fraction of DNA fragmentation for bone tumor cells increased significantly.

<table>
<thead>
<tr>
<th>Table 1. Quantitative changes of DNA fragmentation for bone tumor cells treated with 153Sm-EDTMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time/h</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>24</td>
</tr>
</tbody>
</table>

** P<0.01
5. Cellular DNA extraction and agarose gel electrophoretic observations

Cellular DNA of \(2 \times 10^6\) bone tumor cells after 3, 6, 9 and 12 h period irradiation with \(^{153}\)Sm-EDTMP was obtained by extraction with 1 ml buffer solution containing 10 mmol Tris \(\cdot\) HCl (pH 8.0), 1 mmol EDTA, 10 mmol NaCl, 1% SDS, 20\(\mu\)g RNAase and 100\(\mu\)g proteinase K (Merck, Germany). Cells were kept in 37°C through 12 h and cooled down to room temperature. Then saturated phenol solution was added with the same volume. Mixed solution was isolated centrifugally with 12,000 g in 10 min. Thereafter, drew apart the supernatant liquor and put into the Eppendorf centrifuge tube. Specimens were extracted again with phenol:chloroform 1:1 solution, then added 0.3 mol/L sodium acetate with dehydrated ethanol at 4°C for centrifugal extraction in 10 min. Extracted DNA was washed twice in 70% ethanol, and dried at routine temperature. Finally, DNA was dissolved in 1 mmol EDTA with 10 mmol Tris \(\cdot\) HCl (pH 7.8) TE buffer solution, and was kept at 4°C.

Agarose gel electrophoresis made by 1.5% agarose gel containing 0.5 mg/l ethidium bromide and 20\(\mu\)g/l extracted sample containing 20\(\mu\)g DNA mixed with 0.25% bromophenol blue and 40% sucrose were then put into gel electrophoretic slot at 50 V for 1.5 h electrophoretic analysis. The gel sample was photographed under UV light.

Agarose gel electrophoresis illustrated the DNA fragmentation such as ladder pattern formation in bone tumor cells, irradiated by \(^{153}\)Sm-EDTMP after different intervals. The internucleosomal DNA damage in bone tumor cells were readily detected 9 h after exposure with \(^{153}\)Sm-EDTMP, in which a typical ladder of DNA was seen. In comparison, no obvious DNA ladder in bone tumor cells treated with \(^{153}\)Sm-EDTMP less than 6 h was observed.

6. Microautoradiographic observations

Microautoradiographic study on bone tumor cells internally irradiated with \(^{153}\)Sm-EDTMP for 3, 6, 9, 12 and 24 h in a 5% CO\(_2\) atmosphere at 37°C. Microautoradiographic procedures were as follows: 20 \(\mu\)l each of control and experimental tumor cells were mounted separately on microscopic slides, which were then coated with thin collodion membrane. Thereafter, the slides were smeared with type N-4 liquid nuclear emulsion, which was 1:1 diluted with double distilled ion-free water, and put into 10% stable reagent 6-nitrobenzene miazol. The slides were then allowed to be exposed to dry nitrogen sphere condition for 3 d at 0°C. After 3 d of exposure, the emulsion-coated sections were developed and fixed at 18°C for 12 min. Soon afterwards, the slides were washed with running water and dipped in 5% glycerol solution. The sections were then double stained with hematoxylin and eosin with reformed method (11). Relative regional autoradiographic activity was then determined by visualization of autoradiographic activity tracks in internally irradiated tumor cells.

The microautoradiographic study showed that \(^{153}\)Sm-EDTMP could penetrate through cell membrane. Observation displays membrane-seeking condensation with tracks of \(^{153}\)Sm-EDTMP in bone tumor cells. The autoradiographic tracks indicated that \(^{153}\)Sm-EDTMP could be phagocytized by bone tumor cells. The tracks of \(^{153}\)Sm-EDTMP are distributed in cytoplasm and nucleus in the form of phagosome. The autoradiographic tracks of \(^{153}\)Sm-EDTMP were also observed in membrane-bounded apoptotic bodies.

7. Inhibition rate of proliferation

The inhibition rate of proliferation of bone tumor cells after internal irradiation with \(^{153}\)Sm-EDTMP was measured by colorimetric MTT assay (12). 1 ml of the tumor cell suspensions at \(2 \times 10^6\) cells/ml were added to 24-well sterile microtitration plates. Then 1 ml of \(^{153}\)Sm-EDTMP with radioactivity of 3.7 \(\times\) \(10^3\) kBq/ml also in complete RPMI 1640 medium was added to each experimental well. To control wells, only 1 ml RPMI 1640 medium was added. Thereafter, the microtitration plates were maintained at 37°C in a humidified atmosphere containing 5% CO\(_2\) for 3, 6, 9, 12 and 24 h. After internal irradiation with \(^{153}\)Sm-EDTMP for different intervals, the tumor cells were harvested and washed with Hanks solution. Cell suspensions were adjusted to \(5 \times 10^5\) cells/ml and put into 55-well Elisa microplate of a volume of 100\(\mu\)l/well in replicate. Then 10\(\mu\)l of MTT solution (5 mg/ml in sterile PBS, filtered through a 0.22\(\mu\)m filter) was added and the microplates were incubated in 5% CO\(_2\) atmosphere at 37°C for 4 h. Finally, 100\(\mu\)l of SDS was added to each well and the microplates were incubated overnight. The absorbance (A) was measured on DG-3022A Elisa microplate reader at wavelength of 540 nm.

From experimental results, the inhibition rate of proliferation of bone tumor cells after internal irradiation with \(^{153}\)Sm-EDTMP for different intervals is shown in Table 2. The inhibition rate of proliferation of bone tumor cells increased progressively with prolonging the time of \(^{153}\)Sm-EDTMP internal irradiation. Especially, the inhibition rate of proliferation of bone tumor cells increased significantly after treatment with \(^{153}\)Sm-EDTMP for 6 h to 24 h.
Table 2. The inhibition rate of proliferation of bone tumor cells after internal irradiation with 153Sm-EDTMP for different intervals

<table>
<thead>
<tr>
<th>Time/h</th>
<th>MTT, A_{540}</th>
<th>153Sm-EDTMP</th>
<th>Inhibition rate/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.45±0.07</td>
<td>0.45±0.07</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.57±0.01</td>
<td>0.53±0.02</td>
<td>7.1</td>
</tr>
<tr>
<td>6</td>
<td>0.62±0.02</td>
<td>0.54±0.08</td>
<td>12.9*</td>
</tr>
<tr>
<td>9</td>
<td>0.65±0.03</td>
<td>0.50±0.14</td>
<td>23.1**</td>
</tr>
<tr>
<td>12</td>
<td>0.71±0.05</td>
<td>0.43±0.12</td>
<td>39.4**</td>
</tr>
<tr>
<td>24</td>
<td>0.78±0.03</td>
<td>0.29±0.04</td>
<td>62.8**</td>
</tr>
</tbody>
</table>

* $P<0.05$; ** $P<0.01$.

DISCUSSION

Previous study was directed towards external radiation induced apoptosis in cells (13). In present study, bone tumor cells were internally irradiated with 153Sm-EDTMP. After irradiations the apoptotic changes in these cells displayed significant nuclear fragmentation, and marked pyknosis in nuclei, as well as apoptotic bodies formation. The internucleosomal fragmentation of DNA in bone tumor cells, which resulted in a ladder type pattern comprising 180 base pair intervals in agarose gel electrophoresis, was a key molecular event in apoptosis. Recent data provided strong evidence that bone tumor cells undergo apoptosis when encountered 153Sm-EDTMP. In the meantime, the microautoradiographic study showed that 153Sm-EDTMP could permeate through cell membrane and displayed membrane-seeking condensation in bone tumor cells. Thereafter, 153Sm-EDTMP could be phagocytized and distributed in cytoplasm and nucleus in the form of phagosome. At the same time, the membrane-bounded apoptotic bodies were observed. Our experimental study indicated that progression of apoptosis of bone tumor cells induced by 153Sm-EDTMP was dependent on the 153Sm-EDTMP exposure time.

As a rule, the inhibition rate of cell proliferation was enhanced with prolongation of irradiation time. The present study showed that with the prolongation of internal irradiation time by 153Sm-EDTMP, the inhibition rate of proliferation of bone tumor cells increased progressively.

REFERENCES